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So, in this chapter we shall discuss a number of variants of singular homology. These include

the simplicial and singular simplicial homologies for simplicial complexes, CW-homology

and cellular CW-homology for CW-complexes and maybe one or more also. So, we shall

state how each of them is related with the standard singular homology that we have studied so

far.  But they are for  special  types of topological spaces  and not for  arbitrary topological

spaces. That you have to keep in mind.

The proofs are all postponed to the last section. Each of these homology groups enhances our

our grip on singular homology and helps in computations in the special cases and it gives you

some fantastic results about the singular homology of topological spaces themselves finally.
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So, the first one is singular simplicial homology. In singular homology, we understand, we

are just taking continuous functions from  to a topological space   at the starting point,

what are  called the singular  -simplexes,  whereas  now we are  going to replace them by

simplicial maps. So, for that we need  to be not an arbitrary space but a simplicial complex,

that is the whole idea. 

The singular chain complex of a topological space is too huge to carry out certain types of

computations. At least in the case of a polyhedron, namely, when the underlying topological

space has a simplicial complex structure, we can remedy this situation by introducing a sub

chain complex of  So that new thing that we are going to consider is a sub chain complex of

the singular chain complex of  which yields the same homology groups as  When

you go to the homology, they will be the same. Same means what? canonically isomorphic.

There  is  a  sub  chain  there  and  the  inclusion  map,  when you pass  on  to  homology,  the

inclusion induces an isomorphism. That is the final statement okay?
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So,   we  have  seen  earlier  the  simplicial  approximation  theorem.  Remember  that  for  a

polyhedron,  by  polyhedron  I  mean  the  topological  space  ,  where   is  a  simiplicial

complex. the set of simiplicial maps is capable of capturing topological features of the space,

at least up to homotopy type, okay? The simplicial approximation theorem just says that any

continuous map can be replaced by a simplicial map up to homotopy.

After that we have seen a lot of applications of this result. So it should be possible to have a

similar treatment while dealing with homology groups also. So, to be a little more precise, we

can think of taking only simplicial maps  from  to , In the general case of an arbitrary

space , all contiguous maps are taken. Now use the extra structure on  namely,  is .

So, instead of taking all continuous functions you can take only those which are given by

simplicial maps.

So, without taking bars, you can first take  to be a simiplicial map from  into , and then

pass on to the corresponding continuous function  from mod  to . That is the meaning

of a simplicial maps in short for me. Now we can just take them as the basis elements and

take the abelian group (or module) generated by them, that will be a subgroup of . So, if

this turns out to be meaningful, it would have same kind of advantage over the singular chain

complex as simplicial  maps have over continuous functions  right? The set  of  continuous

functions  is  too  huge,  whereas  simplicial  simplicial  maps  can  all  be  written   down and

counted. You can analyse them easily. So that is the whole idea okay?
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For instance, these sub chain groups become now purely combinatorial objects. You can feed

it in a computer. And they will be extremely handy compared to the ordinary singular chain

group. This is what we would like to study now okay?
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So that is all pep-talk or sales-talk. We will now come to brass tacks. So, just like we started

with  as a topological pair, let  be a simplicial pair.   is a simplicial complex

and  is sub complex okay? Now I am going to write down a new symbol double , you

know, just to distinguish from ordinary , okay?

So, double of  is the subgroup of  generated by all simplicial maps  from 

to   okay? This is similar to taking just polynomial functions or linear functions instead of

all continuous functions, yeah? that is what I am doing here. So, let double of  be



the quotient group double  modulo double of . So, any simplicial map  to ,

would be also a simplicial map into in  and hence double of  is a subgroup of double

of   and the quotient maps sense. Similar to the case of  , this is also a free

abelian group with the set of simmplical maps into  with their image not contained in .

Even if one of the vertex goes outside  , such a simplical map will be inside this basis of

double . So, though it is obtained as a quotient group, it is still a free abelian group,

with the basis consisting of those simplicial maps  such that  is not contained in .  

Similarly, now take the same face maps. Remember the face maps were linear maps. So,

when you take the boundary operator which is the sum of these face maps, if you have started

with   as a simplicial  map, the boundary will  be also a sum of simplical maps.  So, if  

denotes the boundary map of singular chain complex, then   of double of   will be

contained in double of .

So,  this  is  the beauty  of  this  boundary operator  here,  which is  a  sum of  the face maps,

actually linear maps. So,  double of  which is the graded direct sum of double 

and double of   which is the of graded direct sum of double of   form sub

chain complexes okay? What are boundary operators here? Just the restriction of the same 

on  and  respectively. Okay?

So, the construction of simplicial chain complex was easy. But the difficult task is to show

that the inclusion induced homomorphism in the homology is an isomorphism. That is not

coming so easily okay you have to have some patience.
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Instead of doing that let us get familiar with this new object first. So, let us compute a few

things with this new chain complex. What is  of double of  for a connected complex

? Remember a simplicial complex  is connected if and only if any two vertices inside 

can be joined by any edge-path. An edge path means what? A sequence of directed edges

okay, with the next edge starting at the vertex where the present one ends. Like this take a

finite sequence from one vertex to another vertex. If you can do that for any two vertices then

 is connected. This result we have seen in part I okay. So, if you take such an edge path,

then each edge gives you a -simplicial simplex in . You can take the sum of these to get a

chain. What is the boundary of this? It is the sum of the boundaries of each edge which is the

end  vertex  minus  the  initial  vertex.  So,  only  the  starting vertex  and  the end  vertex  will

remain, the starting vertex will come with a minus sign and the end vertex comes with a plus

sign, the in between vertices cancel out. So, what you get is that the boundary of this chain

sigma is , where  and  are end points of this edge-path okay? 

The rest of the argument is the same as for the singular chain complex of any path connected

space. We can use the augmentation map  from double of  to , right, which sends all

the vertices to   in  . In particular  . So, all these arguments will be same way as

before  and  what  you  conclude  is  that   is  isomorphic  to  ,  the

isomorphism being induced by the augmentation. 

So, the only difference is that earlier we took arbitrary path but in a connected simplicial

complex you can choose by an edge path.
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We introduce some convenient notation now for going further. A simplicial map  into 

can be displayed completely,  unlike an arbitrary continuous function, which may be very

complicated.  You do not have any formula in  general,  but  the case  of  some polynomial

functions or trigonometric functions and so on right? But here, we are in a better situation of

linear functions. A linear function can be displayed by simply writing down the image of the

generators. Similarly, a simplicial singular n-simplex is completely determined by it values

on the vertices  . So we can store it in a sequence   and enclosed it in

square bracket, where  which are some vertices of . Thus a singular simplicial -

simplex is  encoded  by an ordered  -tuple of vertices in  .  Since  the entire   is  a

simplicial, it follows that an ordered -tuple of vertices of  form unique singular -simplex

in  if and only if all those vertices belong to a single simplex in .

The only thing is that it may not be an -simplex. It may be a -simplex also when all vertices

of  are mapped to the same vertex of . It may be -simplex or it may be a -simplex for

any . So, what happens is that the map  may not be injective, so  may not

be distinct okay? This is the difference between a singular simplical -simplex in  and a -

simplex in . The ordered -tuple  does not coincide with the set of vertices

.But if you cut down all the repetitions then we get the image set  The

ordered -tuple will tell you exactly what the map  is. That is very important for us okay? 

So, let us understand notation correctly, where 's are in some simplex  okay? And  is

the image of   under  , okay? So, take any simplex   in  . It  may have a number of

vertices. Take a sequence in that which is a not necessarily consisting of distinct elements



okay? Just a sequence  . That will give you a singular simplicial  -simplex. The

word `singular' is used functions which may not injective in this sense.
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In  particular  take   itself,  okay?  Remember  that   is  homeomorphic  to  the

topological space  . We have studied   and   of a sphere etc. to begin with. So I

would like to study them again when  is  the standard -simplex. Then all the face maps

 from  to  are simplicial and can be represented in the above form. What happens

to  under ?  etc. upto  will remain the same,  will be shifted to  from 

onwards, right? We can view  as a  simplicial simplex in , okay? It follows that

we can just  use the notation  .  Put a hat on   to indicate  that  the

vertex  is missing in the list. It is like hiding , or dropping , the rest of them are there.

This  is  a  notation  where  hat  indicates  that  the  corresponding  entry  is  deleted  from  the

sequence. That is all.

This notation is very convenient. Accordingly, boundary of   will be nothing

but summation from  to  of . This is just the new interpretation of

the old formula.
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Once you have this notation I can now write down the chain complex of  itself okay? How

many  singular  simplicial  -simplices  are  there  in  ?  Tell  me.  A  singular  simplicial  -

simplex means any function from the vertex set  to the vertex set of , right?

which has   elements.   has   elements, and there is no restriction at all these

functions, you have to take all of them.

So, you get . This may look huge but compared to all continuous function this is

very small. All continuous functions from mod  to  are uncountable. So, here we have

to only take all sequences of length  taking values in the vertex set of . Therefore,

double of  is a free abelian group of rank .
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Let us have one more notation. Given a singular simplicial  -simplex sigma in   and any

vertex , consider the cone construction which we have done before, viz., the -

singular simpicial simplex  the cone over  with this vertex , defined by  and

. We have to shift  because the first slot has been taken by , afterwards

you just apply  okay so this must be , okay?

We can then extend this notation linearly tom all chains,  as well.   of that is nothing

but  okay. So, this is what we mean by cone construction. It follows that boundary

of  is given by exactly the way we have done before viz., , first  will drop out

and then minus plus etc  followed by terms in  will appear. 
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We can then extend this notation linearly to all chains,  as well.  of that is nothing

but , okay. So, this is what we mean by cone construction. 

It  follows  that  boundary  of   is  given  by  exactly  the  way  we  have  done  before  viz.,

, first   will drop out and then minus plus etc   followed by terms in   will

appear. 
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This allows us a simple way to construct a chain homotopy of the identity map of double

 into itself with the chain map  from  to itself defined as follows. So, what is ?

Fix any vertex  belonging to . Then , where we have to define  double 

to  itself.  Take   for  all  vertices   of  ,  and  extend  linearly.  Take   to  be

identically  for all . 

So, this  collapses double  to  in dimensions other than  and at the th level it collapses

double  to an infinite cyclic subgroup generated by . There is nothing more to check than

to see that  on double of , to see that this  is a chain map.

To verify this, viz.,  , you consider the two cases separately.

In positive dimensions, both sides are equal to . In dimension zero, both sides operating on

any vertex  yield .
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So, an immediate consequence of this is that on the homology, being chain homotopic, the

two  maps  should  induce  the  same  homomorphisms.  The  identity  map  induces  identity

homomorphism in the homology. I have to look at what happens to , okay?

So,  it  is easily seen that   is   in positive dimensions, since the morphism itself is  . It

follows that  are all zero for , since the identity morphism of a group

is zero means the group itself is . It remains to compute . For this we can argue just like in

the case of   of the singular homology of a path connected space, via the augmentation

map. Notice that the  plays the role of augmentation map here and induces an isomorphism

of  with an infinite cyclic group. 


