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Following  the  computation  of  the  homology  groups  of  the  spheres  and  some  specific

generator in  for each , let us do a little more computation here. With one definition

first. Take any continuous function from   to  . Look at the induced morphism  from

 to . We know that both domain and codomain are infinite cyclic groups. 

Fixing a generator for this infinite cyclic group denoted by  will have to be some

integer . This integer  is called the degree of . So this is defined whenever you have a

map from  to . The degree would be an integer in general. okay? 
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Let us try our hand in computing this degree of some very special maps. Obviously, if you

take  to be identity map then  will be also identity map and hence  will go to  so  will

be  .  So identity  map has  degree  .  Another  important  thing you may notice  is  that  the

homomorphism   depends only on the homotopy type of  . If you change the map by a

homotopy, the degree does not change because  does not change okay? 

So let us now consider the functions on  , which are reflections, reflection in one of the

coordinate planes. Let us take first simplest one, namely the first coordinate itself, the  -th

coordinate itself goes to its opposite and all other coordinates are kept fixed; 

goes to . So that is a reflection. On  itself, (which is a subset of , okay?

Remember  it  is  subspace  of  unit  vectors  in   which  means  .  But  we  have

carefully avoided writing  or  because it may create confusion with the real numbers or

integers which you are going to use as coefficients from the ring.) We are denoting it by

. What is effect of this reflection  on that one?  will go to  ,   will go to  

okay.  So  therefore,   of   will  be  ,  okay?  Just  interchange   and  .   is  a

generator , remember that. So  is . Therefore, this degree =  on .

Now, on  what happens? The map is  going to  okay? If you think of this

as  a  complex  number  it  is  somewhat  similar  to  the  conjugation  but  the  conjugation  is

different, this minus of that. So on , again changes  and , but the North pole and South

pole are kept fixed. 



So go  back  to  the  definition  of  .  So,   and   are

interchanged.  So the sign of  this  one changes  again.  Therefore  on   also degree is  .

Inductively you can see that each time  and  we are the only two things interchanged all the

latter the vertices are fixed, okay? It follows that degree of  is always  in all dimension. 
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So, next we can take other reflections, instead of changing the -th coordinate, e.g., in  if

you take   to   okay, then as complex number it is actually the conjugation

map. Then it keeps  and  fixed and interchanges  and . Check that it is again of degree

. So, more generally, if only one coordinate is getting changed to the negative, then the

generator changes its sign. 
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Therefore, for all , if  takes  to , (all ,  are

kept fixed and  -th coordinate becomes minus of itself), viz., if   is the reflection in the

hyperplane perpendicular to -th coordinate axis,  okay, then its degree is .  

Now let us consider the antipodal map, antipodal map changes sign of all the coordinates.

Therefore, you can write it as   equal to the  , the composite of  

reflections.  By  the  functoriality   will  be  the  composite  of  .

Therefore it follows that degree of  is  okay. 

So we have computed the degree of  very effortlessly okay? This could have been done (and

it is done) in different methods. In a differential topology course, you may come across the

degree concept in a different  way. Indeed, it  actually comes from complex analysis of  -

variable. ok? For example, while learning the fundamental group of a circle also you must

have studied the degree of a map from  to . 
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Here is a quick and a very interesting theorem which you must have learnt elsewhere also

alright? Once you know the degree of the antipodal  map you have this theorem which is

called  Hairy-Ball  theorem  in  differential  topology  and  which  has  roots  in  differential

topology. What it says is that there is no continuous function  from  to  such that 

is perpendicular to  at every  in . 



Such a function is actually called a nowhere-vanishing vector field. Actually, here it is the

unit vector field, because I have  also a unit vector. On an even dimensional sphere every

vector field has to vanish somewhere, that is the statement in differential topology.
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The proof is just one line, namely, if there is such an , then consider the homotopy  from

 to   given  by  .  Remember   and   are

perpendicular to each other. Therefore, if you compute the norm of this one, this will be also

equal  to one  because   okay?  The norm of   will  be

again  . Therefore   takes values inside  . Because   is continuous, it follows that   is

continuous, Okay? 

For , it is  , so it the identity map and for , it is  which is the antipodal map.

That means that identity map and antipodal maps are homotopic to each other.  That is a

contradiction because identity map is always degree  and whereas the degree of  is equal

to , okay? 
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So let us carry on with one more comment here. In part one, we have introduced the degree of

a map from  to  , using which we computed the fundamental group  and showed

that  it  is  isomorphic to the group of integer.  The two definitions of the degree are quite

different ones but they represent the same thing. 
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So now let us do some more computation this time with a torus.  By a tours I  mean the

product of  with yourself, , okay? So to apply Mayer-Vietoris sequence, just like in

the case of , but this time we will break it up along the second factor, okay? Keep the first

factor  as it is. Write the second factor  as the union of  and  equal to  and

. So when you delete  then you call it as  and when you delete , you call it

 Okay? 



Then  and  are two open subsets; they cover the whole of , so we can

apply  Mayer-Vietoris  sequence  here  because  they  form  an  excessisve  couple  okay?  So

Mayer-Vietoris sequence (22) can be applied to get a long exact sequence okay? But before

writing down this, we will make some simplifications, namely the subspace  is sitting

inside the intersection of  and  is strong deformation retract, right? 

This we have seen in the computation of homology of  itself. So therefore, we can replace

the   of the intersection by  . Since   is just the disjoint union of two

copies of , we know its homology groups completely.
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So we get  the  following  exact  sequence,   to   of  the  total  space  then  you  have  the

connecting homomorphism to  of the intersection which has been replaced by 

,  then  you  have   here  which  is  defined  to  be  a  maps  to  ,  right?  To

 okay? then you have  which sends  into , into

the   of  entire  space,  .  Once  again  there  is  the  connecting  morphisn   to

 to the direct sum and then to   of the total space.  That is where the exact

sequence stops. 

What are these terms? The term before this, what is it? This is  of the direct sum? What are

the spaces?  is same as  because  is contractible and hence  is a

deformation  retract  of  .  And we have  computed   to  be   for  all  .  It

follows that   is also   for all  . So, we we need to concentrate on on the

above end tail-end of the exact sequence. 
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The first term in the sequence, as we have indicated above is . For the same reason the third,

fourth, sixth and seventh terms are isomorphic to the direct sum of two copies of . Okay?

Since   is  path  connected,  the  last  term   is  infinite  cyclic.  For  any

continuous function  into a path connected space, it is easily checked that  at the  level

is surjective. Therefore the last morphism  is surjective. Hence its kernel is isomorphic to ,

which is equal to the image of  from . Therefore, the kernel of  is also infinite

cyclic which is equal to image of  from .   

We now need specific  information on   from   direct  sum   to

. If   from  to  is the projection to the first coordinate then we know

that   is  . Hence it follows that   (1, 0) is non zero in  . If follows

that . Therefore both kernel and image of  are isomorphic to . It follows that

there is an exact sequence  to  to  to  to . Hence  is isomorphic

to .
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Finally, I have come some information on the image of   Being equal to kernel of  , it is

infinite cyclic group. But  is also injective. Therefore,   is infinite cyclic. Once

again the same kind of thing happens to that infinite cyclic group will come to direct someone

of this one why this I do not know no okay it is kernel will be equal image of . 
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So, let me repeat  whatever we have done here.   is surjective on  _ level and hence its

kernel is isomorphic to . Therefore the image and kernel of  at the  level are isomorphic

to .  Therefore delta from  to  also has kernel equal to . okay? So I have come up to

the conclusion that  from  to  has infinite cyclic image. Okay? Now

let us look at what this morphism . The domain of  is . Since

 is contrctible, we can take the restriction of  to the subspace  on both factors. Now

if we write  for the generator of , then we can use the notation  and  for the



generators in the two summands respectively. It follows that   is non zero element in

 and  also  .  Thus  at  this  stage,  we  have  used  a  very  specific

property of  on the  level. 

It follows that the image if  is infinite cyclic because only one component survives okay?

So image of  infinite cyclic subgroup of . We have to observe that it is equal to

kernel of . It is also important that the image of  is also infinite cyclic. Since a surjective

homomorphisnm from  an  abelian  group  to  an  infinite  cyclic  groups  splits,  we can  now

conclude that the domain is the direct sum of the kernel and the image of . That is important,

otherwise, you will not be able to say it is a direct sum. Just surjective morphism does not

mean that you have a splitting, that the image is a free abelian group, an infinite cyclic group,

that helps. So  is the direct sum of  with itself. 

Now here is again  is free abelian group of rank , image of  is infinite cyclic

and hence kernel is also infinite cyclic. Therefore the image of   is infinite cyclic. But   is

injective.  Therefore,   defines  an  isomorphism of   with  its  image  which  is

infinite cyclic group. 

So this completes the computation of . The second homology is an infinite cyclic

group. The first homology is an abelian group of rank  , the  -th homology is also infinite

cyclic because the space is path connected. All groups beyond the level  are . 

So you go through the proof again and again because this is a typical way exact homology

sequences are used. Though not all the time you will get all these information. You were

lucky enough to have many things here.  But this is the kind of argument you have to go

through whenever you use Mayer-Vietoris sequence to extract some information okay?
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So let us  sum it up here: ,  and  is  and  otherwise. 
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So  the  example  is  a  typical  way  Mayer-Vietoris  sequence  can  be  employed  in  specific

situations. Of course, there are more elegant proofs of this this result they are called connect

formula.
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So I want to make a general remark here. Functoriality of the homology is the first thing.

Then the  homotopy invariance  properties  of  the  singular  homology,  the  third  one  is  the

homology exact sequence of a pair and the fourth one is the excision property. The fifth one

is the dimension axiom. Okay? These things are so important that they have been raised to

the status of axioms for homology. 

This is not done by one single author, I mean, not by one two authors, though Eilenberg and

Steenrod consolidated it around 50, when they established general homology theory. Most

often in deriving a certain result concerning singular homology, we need not appeal to the

actual construction, but only use these four or five properties in a clever way and get many

many results. 

Therefore, all  such results will  be true for any other homology, which also satisfies these

axioms. Remember, we are assigned homology modules to a pair of topological spaces,  via a

chain complex. That is not the case always. One could get many other homology theories

which arise,  in different  ways some times using special  structures  on topological  spaces.

Then you can create your own homology in a very different way. 

So, what do we mean by homology theory here? Any functor which satisfies some of these

very first things, functoriality, homotopy invariance etc., Nobody cares about anything which

is not functorial. Similarly,  homotopy invariance is another thing,  the long homology exact

sequence yet another and so on. In case of singular homology, of a chian complex, it was a

free gift from algebra.  But if your functor is not coming via a chain complex, this free gift



may not  be  there,  and  so you will  have  to  verify  it  directly.  There  are  some homology

theories which do not satisfy the excision property so strongly. This is  again a very very

crucial one in, you know what, in computing homology from small open subsets to larger

spaces. 

One is not so much bothered about the property 4 which was the computation of homology of

path connected components, namely, the singular homology of a topological space is a direct

sum of the singular homology of its path connected components. Also there is a slightly more

general result,  namely, if you have a disjoint union of a family of topological spaces then the

homology is a direct sum of the homology of these member spaces. These properties are not

considered to be fundamental.

Again it is very obvious that we can artificially introduce a kind of shift in the indexing of the

singular  chain  complex  and  cause  the  dimension  axiom  to  go  wrong.  There  are  many

homology  theories  which  do  not  satisfy  the  dimension  axiom.  They  are  usually  called

extraordinary homology homology theories. So, K-theory and bordism theory do and so on

which we cannot discuss here are examples of extra ordinary homology theories. Okay? 
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What Eilenberg and Steenrod did is  that  suppose  that  any two homology theories which

satisfy this set of fundamental axioms on the category of compact polydrons, will coincide.

That is  a fantastic  result,  we will not be able to prove that  one here.  However,  we have

developed quite a different kind of tools here.  I will show you several of them are equivalent,

indeed, whatever theory is interesting to us, we will see by hand that it coincides with the



singular homology. There are certain techniques there,  if you master them, then it will be

easy for you to go back and read Eilenberg-Steenrod's results. So that is the idea. So let us

stop here. Next time we will try to do different kinds of homologies. Thank you.


