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Having  introduced  the  singular  homology,  having  verified  a  number  of  its  interesting

properties and having computed the homology of a single point and proved that the singular

homology is a direct sum of the homology of its components etc. yet at this stage, we still do

not have any powerful tool to compute the homology. 

So now, we shall discuss one of the most important concepts, namely, excision, which will

yield a powerful tool for computing homology. This is called Mayer-Vietoris principle in real

terms, which will give you a long homology exact sequence, and that will help a much more

than whatever we have done so far. 
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So, let us start with two open subspaces  of a topological space  and denote the inclusion

maps by . They will induce inclusion maps again from  to  of the singular chain

complexes. Now, consider the chain map from the direct sum to , namely,  (a

general element in the direct sum) going to . 
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This will be clearly a chain map. The linear combination of chain maps is a chain map and

the inclusion maps are chain maps. What is the kernel of this map? Remember 

and  they are all free abelian groups. So, the direct sum is a free abelian group. So, an

element is  means all the coefficients of each singular simplex is . That is the meaning of

certain element is zero in a free abelian group. 

So kernel means what now? If  and  are chains in  and , and  is in the kernel

of ( ), then corresponding coefficients of the singular chains must be identical for  



and  . That just means that   is identically equal  to   in  . But one is in   and

another inside  . Therefore   must be inside  . Further you can easily

check that  is actually the entire kernel.

Next, what is the image of this? That is easy to check. It is just like sum of two elements one

element from here and another element from here. The sum or the difference are the same

sum of elements here. So that will be a submodule here and that submodule is usually written

as  just  the  without  the  without  the  direct  sum  notation,  just  the  ordinary  sum,

 is the image. 

Therefore  we  have  a  short  exact  sequence,   to   to   to

 to  . The first morphism here is  a maps to   and the second one is

. So, you know exactly what the morphisms are, though it is not written in the slide.
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So this will then give you a long exact sequence of homology modules from which we hope,

by experience that there will be some information on  of this chain complex here. Since 

of the direct sum is the direct sum of 's, this we know if you also know , the

intersection of the two space subspaces. We should know what is happening in  and

. Then we may be able to say something about the   of the sum. So, this theme

which is known as Mayer-Vietoris, was there in the study of fundamental group under the

name Van-Kampen's theorem. So, this is a general principle here which goes under the name

Mayer-Vietoris, after two Austrian mathematicians of early last century. 



So, the question is can we replace  with ? Why do we hope such

a thing. To begin with we must assume that the space  is the union of  and . Without

that topological hypothesis as the starting point, we should not proceed. But even after that

can you do this algebra, viz., can one replace   by  ? Does the

inclusion induced from the submodule to the whole at the chain level induce isomorphism at

the homology level? So this is the question, we shall now proceed toward some affirmative

answers to this question.
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The first technical step is this mega lemma here before we go to the positive answer finally,

the beautiful answer given by Mayer Vietoris sequence which will be our aim. So, this is

lemma algebraic  preliminary for  that, about how to deal with this question, namely,  four

other  equivalent  statements  to  the  statement  that  the  inclusion  induced  morphism  is  an

isomorphism. 

I am changing notation here instead of   and  , because this is  applicable in  a larger

context. Start with . The following statements are equivalent.

(a) the inclusion morphism of  to  induces an isomorphism in homology.

So,  this  is  a  very  clear  statement  namely  the  inclusion  induced  the  homomorphism this

homomorphism must be itself isomorphism that is what is demanded in this.

(b)  the  second  statement  is  that   on  both  sides  induces  an

isomorphism on the homology. Note that these quotient complexes are chain complexes, and



the chain maps are again induced by inclusion maps. When you pass to homology, it must be

an isomorphism.

(c) The third condition is similar to (b) and is obtained by interchanging  and . After going

modulo   instead  of  .  Obviously,  (b)  and  (c)  are  These  two  are  obviously

equivalent to each other by symmetry. 

(d) The fourth condition is slightly different now. Just take  and go modulo 

on the left and take   on the right. Obviously, there is a homomorphism at the

chain  complex  level,  again  induced  by inclusion  maps.  The  statement  is  that  this  inturn

induces isomorphism at the homology level. 

(e) The fifth statement is similar to fourth one, again by interchanging  and . 
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So, you know, these statements  are similar to  what  you may call  Noether's  isomorphism

theorem, first isomorphism and so on. It is of that nature. So let us quickly go through these

equivalences. Equivalence of (a) and  (b) is an easy consequence of five-lemma.

So we have to use this result which you have been introduced to, just a couple of days back.

From  to , there is the inclusion map and this is the quotient morphism

onto   by   and that is  the kernel  .  So, this is an exact sequence.

Similarly, we have another exact sequence in the second row. 

Let us now look at (b) and (d).   here and I am taking modulo . So,

this  is  basically  like the isomorphism theorem, (b)  and (d)  follow from the commutative



diagram below in which the horizontal arrow is an isomorphism theorem given by Noether’s

isomorphism theorem. So, all the 5 statements are equivalent equal to each other.
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So, now we shall  make a definition.  Take  a topological  space   and   and   any two

subspaces. (Just to our sake of definiteness, assume that   is equal to  , which is not

necessary  it  will  follow  automatically  from  what  we  say  next.)  Suppose

. We then say that the inclusion map of the pairs  to 

is an excision map. So, I could have also said that  to  is as excision map

because both are equivalent to the condition that . So, this is purely set theoretic

condition. 

Next,  a  pair   of  topological  subspaces  is  called  an  excisive  couple  (note  that  this

definition is something different, and not really a set theoretic one) for the singular homology

(this definition is with resect to a particular homology theory) excisive couple for singular

homology excisive couple for some other homology and hence depends upon what homology

you choose) if the inclusion map   to   induces isomorphism of the

singular homology, that is, the first condition of this lemma is satisfied, once you assume

.

So, we are taking conveniently the first statement of the lemma, that is what our aim is  after

all, and converting  it into a definition.
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Clearly, we could have taken any one of the four other equivalent statements but now each of

them becomes a theorem. Here we take statement (d) and restate it as a theorem. 
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If   is  an  excisive  couple,  then  the  inclusion  map  induces  an  isomorphism  of

 to  .  That  is  the  statement  (d)  here.  The  first  one  is

 and the second one is .

Note that a pair  of subspaces of a space may or may not be an excessive couple, but

the inclusion map  to  is always an excision map, which is purely to tell

you that every thing is inside . 
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So  excision  theorem  below  is  due  to  Mayer  and  Vietoris.  The  present  form  is  due  to

Eilenberg and Steenrod. So, between Mayer-Vietoris invention of this idea to the present

modern formulation of the statement, it took almost 20-25 years. Mayer-Vietoris did not state

it in this way. 

If  is the union of subspaces  and  in such a way that if we just take the interior of 

and interior of  that must cover the whole of , then  is an excisive couple for

singular homology. This is a statement if the theorem now. This just means that I can replace

 by  itself. Replacing means what? After passing to the homology, the

inclusion induced map itself is an isomorphism.

This condition may look a bit strange. But suppose  and  are open subsets. Then interior

of  is   itself. So, this is the easiest situation when the excision theorem can be applied

whenever the two subsets are open and they cover the whole space . Then you are in good

shape. You can compute the homology of the whole space in some sense by knowing the

homology of  , homology of   and the homology of the intersection. How you can do

that? Via the long homology sequence. So that part we shall now explicitly state and that is

what is called Mayer-Vietoris sequence. 

(Refer Slide Time: 23:48)



We  shall  postpone  the  proof  of  this  theorem  just  like  we  have  postponed  the  proof  of

homotopy invariance of the homology. For the present, we shall only make a remark about

the proof. Assume for the time being that  and  are open.  

Given a singular  -simplex   in  , which may or may not be inside   or  . Then the

typical thing to do is, just like in all work in analysis, to cut down the singular simplex into

finer pieces such that each part is inside  or . So, one subdivides  in such a way that

the image of each sub-simplex of this subdivision under sigma is contained inside  or .

One thinks of the original singular simplex  as an appropriate sum of these little pieces.

It  is  just  like  in  Riemann integration  theory.  If  you  have  an  interval  of  definition  of  a

continuous function, you cut down the interval into two subintervals, and the integral on the

first one plus integral on the second interval is equal to the integral on the entire original

interval.  Same is true for  area integrals  etc.  The important  thing is  that  the smaller parts

would  not  `overlap'  and  still  cover  the  whole.  This  is  the  motivation  for  homology,

motivation and guidance from what happens in the integration theory in analysis.

You cut it down into little pieces and take an appropriate sum. Though they are different

chains, when you pass onto homology they will represent the same stuff.  Most of the effort

goes into proving this part.  Somehow, in our definition of singular homology there is no

integration, nothing. 



Of course, all this thing has to be done in a canonical fashion, not depending upon the actual

nature of  and . Once you have the whole thing, the thing should work if you replace 

,  by some other  subject to the only condition that they are open subspaces. So, let

us stop here. For more explanations, actual proof, etc. we will have to wait.

(Refer Slide Time: 27:22)

But now, let me give a few examples of excisive couples, which occur in practice. The first

one is: take the disk  , the closed unit disk or open disk, let us say open disk  , and

. These are open sets, the union is , I want to say that this is an excessive couple

because   is  open  subset,  and   is  always  an  open  subset,  over.  But  now  the

conclusion is that the inclusion map  to  induces isomorphisms

in the singular homology groups. This is one of the very useful things. This is the starting

point of our discussion in manifold theory and so on, we will see that. 

The second example: Take the sphere . Let   and  denote the north pole and the south

pole respectively. I am just looking at the North pole now. And let  denote the closed upper

hemisphere.  Then   is  what?  The  top  point,  the  north  pole  is  deleted.  The  pair

 is  an  excessive  couple  and  hence  the  inclusion  induced  map  should  be  an

isomorphism in the homology  to .

I have deliberately take  here.   is not an open set but interior of  and , they are

open subsets and they cover the whole space. So,  is not open here. Similarly, in the first

example also, see there also I told you  would have been closed disc. The interior of 

and  , they are open and then they cover whole of  . That is enough. That was this



kind of statement here in this theorem interior of   and interior of   should cover the

whole space.

So these two examples will be used again. that they give excision of isomorphisms. For more

examples, you will have to wait. So today let us stop here.


