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Today, we shall now study a number of examples.  Before that I will give you one more

definition, namely, subcomplex.
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Like in the case of subcomplex of a simplicial complex, there is a definition of subcomplex in

the case of CW-complexes also. Let us define the notiton of a subcomplex of a relative CW-

complex. It is going to be a relative CW complex  and a subcomplex of a relative CW



complex . So,  is a relative CW complex, and  is a subcomplex. What is

the meaning? First of all

(i) the topological pair  itself should be a CW complex on its own and then

(ii)  is a subset of  is a subset of ;

(iii)  each cell  that  you are attaching in getting   from   along with the attaching maps

should come from the corresponding cells that you are attaching in getting  from . 

Each cell in  should be also cell in  with precisely the same attaching map. In other words,

in the collection of attaching maps of  you may delete some of them to obtain . 

But if you delete arbitrarily it may not be a subcomplex. Because, whatever attaching maps

are remaining their codomain must be appropriate. If you have deleted cells which form part

of codomain of the attaching map of a latter cell, then that cell also have to be deleted. So,

there is a very strong restriction on being a subcomplex. Recall for a subgroup of a group,

there is a group operation, the set must be a subset of the original set, but the group operation

should be also the same as the original one. In the case of subcomplexes, it is the attaching

maps and attaching cells, they must be the same as original one, and for each , the collection

of attaching maps of -cells for  should be also a subset of the collection of the attaching

maps for . That is the meaning of this subcomplex.
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Note that to say that  is a topological sub-pair of a relatives CW complex  means

just  subset of  and  is a subset of  is the union of  and some closed cells in  then



there is a good chance that  is a subcomplex. All that you need to check is that for each

-cell, the codomain of the attaching map is already in the   skeleton of  . So, if you

look at  the  picture  of  a  CW-complex,  then it  will  be much easier  to  determine  whether

something is subcomplex or not. Just by looking at the data given to you, you may not be able

to tell whether you have a subcomplex or not. So, drawing a good picture is an easy way of

determining if something is a subcomplex or not. 

If  is a subcomplex of , then  itself is a relative CW complex. 

Suppose you start with a pure CW complex . (  is a CW complex on its own that means

that   is  empty.)  In  that  case,  a  subcomplex by definition,  is  also a  pure CW complex,

because,  is empty. 

If  is a sub complex of , then what happens is  itself is relative CW complex;  can

be got out of   by attaching all those cells which are missed from  . More generally, if

 is a subcomplex of  , then   will be relative CW complex. So, you

have to throw in  also in the relative part, not just  because  may not contain the whole

of   will contain  . So, take   and then you can attach all those cells which are

missing to get . 

You also see that for a relative CW complex, and for all   is a subcomplex. If you

stop at the   step, in the attaching process, that itself is a subcomplex, because what you

have done, you have not attached the  -cells beyond  -cells,  -cells and so on.

That is another example of a subcomplex. So, these subcomplexes have a special name; they

are called  skeleton of . The subcomplex  is also written as .
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So, now let us have a number specific of CW-complexes as well as relative CW complexes.

To start with any discrete space is a CW complex, any discrete space is obtained by attaching

-cells to the empty set. So, any discrete space itself is a CW complex, no relative pair etc. If

you take a subset of that, you can then think of the pair as relative CW complex also. And

what are the cells  -cells? What is the dimension? Dimension is also  . This is the easiest

example but it is also important one. 
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Let us take the standard sphere. (The spheres and the discs are our basic topological objects.

If  you left them out,  then you will  be in  trouble.)  So, an n dimensional  sphere is  a CW

complex. How? Where do you start? Remember, if you a pure CW complex, you have to



have a -cell there.  cannot be empty. So what is the -cell you have to tell. So, you can

start with any point in , for example, you can take  or , any

one of them as a single -cell.  

If you remove one point from a sphere, what do you get? You will get an open cell namely

 is homeomorphic to  , and   is homeomorphic to open unit ball.  So, the entire

boundary has gone to a single point. Take  . On the boundary you take a constant to  .

Constant map to a single point , no matter what it is, that is the cell. What is the quotient

space? Quotient space is precisely homeomorphic to .

The simplest case is when you take , which is the closed interval  , both  and +1

are mapped to a single point. Then  you get your circle. So, this is a generalization, one  0-

cell and one -cell will give you a CW structure on , that is the simplest way you could

have got a CW complex other than the trivial example that we have taken earlier of a discrete

space. The attaching map is a constant map again. Because if you take the quotient space of

,  wherein  the entire  boundary is  identified to  a  single point,   that  quotient  space is  a

homeomorphic to .

Observes that even though   is a subspace of   via the equatorial inclusion it is not a

subcomplex, with respect to the CW structure that we have introduced. For example, , the

circle is contained as an equator on . Now this is a subspace but it is not a sub complex.

Because for   you have to attach 1 cell,  for   you have attached only  -cells directly to

single point, the single point can be made common to both of them that is fine.  

But the -cell which is inside the subcomplex is not present in the bigger one at all. So this is

not a subcomplex. So, I am giving you an example of a nice picture which may fail to be a

subcomplex picture, equatorial inclusion from   to   or   to  ,   to   and so on all

equatorial inclusion from  to any higher  of where they are not subcomplexes.
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So, here are the pictures that are given, so this is  and  is representing the equatorial

 there is not as a subcomplex, but each of them is a CW complex with a single -cell for

 etc. 

Now, we need to consider more examples. Here also, I will refer to those pictures again. 
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Fix a CW structure on , namely a single point and n cell. Then for  you can give a CW

structure wherein  will be subcomplex. All that you have to do is to fill in the  n cell

with identity map from   to   as the attaching map. Thus you can view   as

relative  CW-complex  also,  because   is  then  a  subcomplex  of  .  Which  is  a  nice

example of a sub complex. The boundary is a subcomplex of the disc . 



So, how many cells are there in this CW structure of  ?   itself is the -cell.

Before that there is an -cell  and even before that there is a -cell. So, there are three of

them. 

So, for instance,  is a CW complex with -cells: one -cell, one -cell and one -cell. Same

picture you can get for any : one -cell, one -cell and then one -cell. You do not go

through  That is not possible by the way. For that, there will be more complications.

That is what is shown in the next picture, but let us come to that one later on. 
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We can have different CW-structure on the same topological space just like we can have

different triangulation of a space. Your topological space,  may not have any CW structure or

that there can be more than one CW structure. 

For instance, we have given , a CW structure with a -cell and one -cell. But now I will

give you another so that equatorial inclusions become subcomplexes. So, consider the usual

equatorial inclusions.   which is   has not just one but   points. So, I start with  

points as my vertices, then how do I get ? I attach two -cells, to  and to get . Having

got , how do I get ? I will get two -cells, upper hemisphere and a lower hemisphere.

Like this, you can keep on going... each time upper hemisphere and  lower hemisphere of one

higher dimension. I can go on getting  Each  can be obtained by

 by  attaching  two  -cells,  one  above  and  one  below,  namely,  the  upper  and  lower



hemispheres. This is the picture here  are the two points to  and , which are two -

cells, then  and  make up the circle, then in the top there is one -cell;  and in the bottom

there is other -cell . This is the picture of . How many cells it has in all?  ; in

each dimension it has two of them. 

So, keep going on like this...each time you attach two cells to get the sphere of the next

dimension, all the way to  . So, this is a nice picture wherein each  -dimensional sphere

will be a subcomplex.
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This cell decomposition is more useful than the earlier one. It  immediately give us a cell

structure  for  the  real  projective  spaces  because  this  cell  structure  is  invariant  under  the

antipodal  action:   equivalent  to  .  -cells  will  be  interchanged,  the  -cells  will  be

interchanged, the  -cells will be interchanged etc, that is the invariance. So, therefore, you

know if you identify  and  all that you have to do is to identify the corresponding cells

that will give you a cell structure on the projective space.

How many -cells will be there? Originally,   and , there were two of them. So, in the

projective spaces  there will be only one -cell, one -cell, only one -cell, and

so on. So,  has -cell for each dimension . So, that is the structure coming

out of the equatorial structure for , because it is invariant under the antipodal action.
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So, that is the picture of . Here I am repeating this one. Recall that  is a quotient space of

 under  the antipodal  action   equivalent  to  .  By the definition of quotient  topology

suppose  from  to  is quotient map then a subset  of  is open if and only if  is

open . So, when you first observe that the quotient map  is both open as well as a closed

mapping. This follows easily from the fact that for any subset  of ,  is open (or

closed) if   is open (or closed) respectively,  because   is a homeomorphic copy of  .

From this many of the topological properties of  pass onto the quotient space. You can use

this to prove that   is a Hausdorff space. This is a wonderful  thing to happen,  because

quotient spaces are quite often not Hausdorff. So, you have to be careful here. Very easy to

get counterexamples. 
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So, for example you prove that  is second countable.  is compact of course.
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A CW structure  as described in (iv) is behaved well with -action, in the sense that the

action  preserves  each  skeleton  and  actually  merely  permutes  the  various  cells  by

homeomorphisms.  In  such situations,  the  quotient  space  acquires  a  natural  CW structure

which you can call it quotient structure. This is a general remark.  

So, coming back to the special case what is happening in ? We begin with  as a single -

cell in . This is the image of   under the quotient map.

Inductively having defined  whose underlying space happens to be , we attach a 

-cell: there are two of them in  , you have to choose only one of them. But what is the

attaching map? Attaching map is now the quotient map from  to where , the cover

double cover so, one single sphere  wraps around twice, in some sense, around , that

is not a sphere of course so, you have to understand what is the attaching map carefully, it is

no  longer  identity  map.  In  the  case  of  sphere  ,  the  boundary  of  upper  (or  lower)

hemisphere is precisely .

So, attaching map was identity there. But below in the quotient space structure, it is simply

the quotient map. 
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So, for definiteness, let us choose the upper hemisphere and take the attaching map to be the 

restricted  to  .  The  space  obtained is  equal  to  .  So,   is  obtained  from   by

attaching a -cell, the boundary of the -cell maps  to  and that is the quotient map. 
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So, what I want to tell you here is that this process can be carried on all the way to ,  is

what? Union of all these increasing sequence of spheres. The topology has to be defined by

taking a set to be closed if and only if its intersection with each  is closed in .  is a

subspace of  which is an infinite direct sum of copies of  (not a direct product, do not

make that mistake). The standard Euclidean inner product can be taken but the topology is

not the metric topology. So, you have to be careful about that. It is the weak topology.
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The cell structure on   is compatible with antipodal action. The vector space structure is

there on  ,  and in particular   mapsto   is  an isomorphism and this cell structure is

compatible with the antipodal action. Hence we get a cell structure on the infinite projective

space.  .  What  is  -th  skeleton?  it  is  just  ,  the  projective  space  of  dimension  .  In

homotopy theory, it is a very important space. Its fundamental group is  and all the higher

homotopic groups, (whatever you do not know or whatever you know) they are all .

So, such a thing is called Eilenberg Maclane space of type .  and all  for 

are . This is a very very important space.
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Exactly same way you can define the infinite complex projective space, and before that all

the complex projective spaces  also. Remember  is the quotient of  under

the  scalar  multiplication,   is  equivalent  to   must  be  nonzero  scalar,

scalars are now complex numbers that is all. However, the cell structure is quite a different

story now. It is very interesting story here. So, we will this study this one carefully? And

perhaps that is the last example for today,

 

So,  we start  with   contained inside   etc  just  like   contained  in   etc,  coordinate

inclusions. These are complex vector subspaces and so multiplication by a complex scalar is

compatible with the inclusions.  
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Hence, we can use the same notation q for all the quotient maps, get  from  to 

and then we can restrict it to the unit spheres here, the unit sphere in  is  because it

is of real  dimension. So, the unit sphere there will be . You can restrict  to the

sphere here that will be surjective because after all every non zero vector is equivalent to a

unit vector, there may be many of them namely if you multiply by unit complex number, then

you get the whole set which is a circle of those elements representing the same element in the

projective space. In the case of real projective spaces, you had only two of them, two unit

vectors namely  and . Here you take any vector and multiply by a unit complex number,

it will be still a unit vector. So,  is the quotient of  modulo the scalar multiplication,

namely,  is now restricted to being a unit vector unit length. 



In any case what is ?  is a complex line, one single line, namely one unit vector in 

up to equivalence. Any two unit vectors are related by a complex number. So,  is a single

point, just like  is single point. What is ? It will be a quotient of  by the  action

there.
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That is an interesting object. First you have to study what is ? The quotient map  from 

to  sends the entire circles to single points. For example,  defines a circle in , it is

the intersection of the plane   with  . The single point which is our   given by

 which is a plane in . There are two independent planes  and . In terms

of complex vector spaces, they are lines. 

To get the -cell, I am taking some a subspace of  denoted by : points  such that 

is a complex number but second coordinate is a real numbers  greater that or equal to 

such that . So, that we will a point of . The first coordinate is any complex

number, second coordinate is non negative real number such that . 

This  subspace   is  clearly  homeomorphic  to  ,  why?  Take  any  ,  since   plus

something is  must be less than or equal to . The second coordinate has to be equal to

. Therefore this subspaces is the graph of the function   mapsto  restricted to the unit

disc . And it is a boundary is given by , which is the same as saying .

So, that is the meaning of the boundary so the boundary is given by . Note that  of this



set will cover the whole of ; every point in  is in the equivalence class of some point of

the form  upto scalars. One point we have taken namely, the second coordinate being

.

That single point is the  -cell.  All other points second coordinate will be nonzero.  Given

 in , once the second coordinate is nonzero, you can divide out  to get a point

of . If , we are dividing by . You are left with just  in the second coordinate.

You are  dividing the  first  coordinate  also by   so that  we get  an  element  in  the same

equivalence class. Equation   is not affected. So, we have proved that this

 is equal to . 

And  restricted to the interior of the -cell namely when , there is a unique solution

with  positive. When  is , there are more solutions but  maps all of them to only one point.

Thus, in the interior of ,   is an injective map. So, this is precisely what we wanted for a

characteristic function to have injectivity on the interior on the boundary some continuous

function that continuous function you can take it as the attaching map and the interior gives

you the characteristic map. Therefore,   is  nothing but the  -disc   with its boundary

collapsed to a single point and hence is homeomorphic to . 

You begin with we did not know what  is. In the process of getting the CW structure on it

we actually showed that it is homeomorphic to . It has a better structure, you can think of

this as the so called of extended complex plane because the map  mapsto  defines a

homeomorphism of .  

The quotient map  from  to  is a very familiar and very important map. It is called the

Hopf fibration. This was used by Hopf to get a big landmark result in topology, that  is

non zero. At the time of Hopf, that was a very big invention. It is a landmark inventions, a

milestone invention in algebraic topology.  
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Inductively having established that   is obtained by attaching a -cell to   via the

quotient map  to ; you see that the subspace  contained in  given by

 equal to the set of all  , such that  . This subspace

 is homeomorphic , the proof is exactly the same as in the case . there are

, there are   coordinates which are free here,   is completely determined by the

values of these by this equation. 

So, checking again that  is the whole of  is also exactly the same. Look at the

last coordinate if it is   already, you are in  , if it is non zero you can solve for this

equation that is it. So, therefore  is obtained by attaching a -cell  to  

via the map  from  to . 
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Keep  doing  this  for  all  ,  all  the  way  ,  upto  .  You are  getting  only

attaching one the dimensional cells each time: there is -cell then there is , then there is 

and so on ... all the way to . 

This is another important space, . This is again an Eilenberg Maclane space. This time it

is simply connected, i.e.,   is trivial.   is the infinite cyclic group and all other homotopy

groups are trivial. So, this is called an Eilenberg Maclane space of type . 

So, one cell in each even dimension   and so on. So, we will study more examples

next time. Thank you.


