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Having defined the singular chain complex and the singular homology of topological pairs,

let us examine today a few very very important properties of the singular homology. These

are going to be the guidelines for the entire  homology theory later on. The properties of

singular  homology,  some of  them not  all  of  them will  be picked up as the  fundamental

properties and declared as axioms.

So, the very first one is the functoriality. So first we have seen that from topological pairs to

the chain complexes, it is a functor okay.  leads to  is a covariant functor

from the category of topological pairs to the category of chain complexes. We have also seen

that taking homology is also a functor from the chain complexes to the graded abelian groups,

or graded modules. Thus composing these two functors what we get is that the association

leads to  as well as  leads to  are covariant functors. Okay? 

Given a map   from   to  , we shall denote by   the morphism induced at the

chain complex level and by   the morphism induced on the homology level okay? Quite

often   is used for both of them and that makes it somewhat confusing. So, let us try to



follow this convention, okay? The star would be for the homology and dot will be for chain

complex. 
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The functorialty is summed up in the following facts. Okay? I am repeating it. We have seen

it earlier, there is nothing new, but just to emphasize this one.  If  from  to  and  from 

to , then  is same thing as . Also, if Id denotes the identity map of any space

 to  , then  from  to   is also the identity map on the homology groups,

Okay? These are the two factors you have to understand. Okay? 
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So, this is one of the fundamental properties of the homology. It is not just some group or a

module  out  of  nothing,  okay?  It  is  a  functorial  association.  That  is  what  one  has  to

understand. 



Next important thing is the homotopy invariance of  .  For any reasonable space,

 is a very huge group. Okay? Why we are taking such a huge group we do not know.

Because the set of all maps from  to any reasonable space is going to be very huge. Of

course, if the space is a discrete space or a single point and so on, then only we can know

what looks like and so on. Otherwise, it is quite a big group. What is important is that each

 is a topological invariant. But it is too huge topological invariant. However,  is

defined as some sub quotient of this group. You take some subgroup and then the quotient of

that group right? It is somewhat strange that this sub quotient group is going to be homotopy

invariant,  which  is  stronger  than  being  homomorphism  invariance.  For  any  homotopy

invariant property is also a homeomorphism invariant property,  Because if  from  to  is

a homeomorphism, then it is also a homotopy equivalence okay? 

So, this homotopy invariance we are going to state very clearly, namely, if  from  to

 are  homotopic  to  each  other,  then   on  .  Okay?  So,  this  is  the

statement of homotopy invariance.  Morphisms induced by two homotopic maps. they are

actually the same at the homology level. 

Note that we are not defining homotoy invariance in terms of topological spaces but in terms

of the maps, which is a stronger okay? That's what you have to pay attention to. From this

definition, you will see that if  from  to  is such that  is its homotopy inverse,

then  we will be homotopic to identity, therefore,  will be will be equal to identity.

Similarly,  the  other  way  round.  This  means   is  the  inverse  of  .  So,  the  homotopy

invariance of the homology for the spaces will follow if you prove the homotopy invariance

of the induced morphisms, okay? 
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So, we will take a few steps toward proving this one, but we will not complete the proof of

this one. We will leave it at a stage wherein things become bit too difficult okay. So, let us

see what is  the easy part  of the proof of this.  Start  with a   which is  a homotopy from

  to  which just means that it is a map from  to , such that  goes

inside  ,  that  is  all.  The  topological  pair   is  nothing  but  same  as  the  pair

.

Suppose  is a homotopy between  and  Okay? Consider the inclusion map  from 

to  which I have written here. I have written fully from  to .

What is ?  So, I am putting  inside  at -th level okay? So, all of these

inclusion  maps.   and   are  important  specific  ones.  Then,   will  be  what?

 and  okay?

When you pass to the homology this will imply that   and   is  ,

because of the functoriality. Therefore, it suffices to prove that  . This is what

we want to prove. If  then we get  will be equal to  Okay? 

So instead of worrying about general  maps,   and  , we you have to just prove just that

 from   to  ,  just  for  these  two  inclusion  maps,  the

induced morphisms must be equal. Note that they are homotopic of course. So, the general

homotopy has been cut down from arbitrary  and  to the case for inclusion maps  and  ,

the two coordinate inclusions. This is precisely the first step that is done in the proof of the

Poincare lemma in differential calculus.
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So, for this purpose we construct a chain homotopy   from  to  ,

between  and , okay? at the chain complex level. If two chain morphisms are chain

homotopic, then we know that they induce same morphism at the homology level. So, this

chain homotopy is called the prism operator. Okay? Because  to  looks like passing

on to the prism. 

For future reference we just state  this as a separate lemma so that we have to prove this

lemma not the whole theorem Okay? What is the lemma? 
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There exist functorial chain homotopies, whole lot of them,   for more elaborately  

(That  is  the  way  to  write  a  functor  Okay?  This  usage  of   indicating  certain

functoriality)  from  to  for all  , between the two inclusion



maps  and . Okay? We shall postpone the proof of this lemma to the last section and take

this lemma and hence the homotopy invariance theorem for granted for the time being, okay. 
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We will now start using it. And the first corollary is homotopy equivalent topological spaces

have isomorphic homology groups. In particular contractible spaces have homology groups

of a single point okay? So, both of these results will be used again and again. Contractible

spaces, as far as homology is concerned, are just like singleton spaces. Okay? 
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Do we know the homology of the single point? So, that is what we have to do now. So,

luckily, we can do that from the scratch. Though we cannot do much of computations here.

So, take   to be any non negative integer. What are all maps from   into a single point

space, The  denotes a single point space, okay? What are all continuous functions here?

What are all functions? There is only one function okay? And it is continuous alright? 



Therefore,  is nothing but a group generated by one element free group generated by 

element that is infinite cyclic. This is true for all  . Note that   is also a single point

space. okay? What are 's for  negative? Of course, we have defined them to be . 

Now comes the crucial thing about the boundary operator . Look at  from  to 

.  I  would  say  it  is  the   map.  Why?  Consider  the  case  .  It  has  two  vertices  and

. But both  and  are the same constant map  to .

Therefore, they cancel out. 

More generally,  if you look at   or   has an even number   faces of

dimension   and  the  constant  function  restricted  to  each  of  them is  the  same  constant

function. Since they are taken wit alternate signs the sum total is zero. For the same reason,

 of  consists of an alternate sum of odd number of constant functions, and hence is equal

to plus or minus of the generator. 

So,  what  we  have  is  in  this  sequence,  starting  with  the  zero  map from   to  ,  going

backward,  alternatively,  we  have  an  isomorphism and  a  zero  map.  Therefore,  the  

onward, we have the kernel and the image are always the same and hence homology groups

are all zero.

At  however,  will be infinite cyclic. Because here the kernel is the whole group 

whereas the image is zero. So  is infinite cyclic and  for . 

Of course,  for . So only the -th homology of a single point survives and rest of

the homologies are all .  
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So let us go ahead. Homology long exact sequence of the pair: Just for this one result, we

made a lot of algebraic preparation, namely, the snake lemma okay? So we use that one and

see how we get this here, as an almost ready result. So by definition,  is the quotient

of   by . Therefore, we have short exact sequence of chain complexes here:   to

 followed by the inclusion map into  followed by the quotient map to  to

. 

Okay, so, this is a short exact sequence of chain complexes. The snake lemma and then the

theorem following that will now yield the long exact sequence of the homologies. What are

these  homology  groups?   to   to   and  then  the  connecting

homomorphusm  to ... The last 4 terms you can write down:  to  to

 to . After that everything will be  okay?  

We know these terms for a singleton space. In general, we do not know even know the last

few terms completely. So, better to start computing these things now. There is a long exact

sequence which is functorial. This sequence comes handy in many computations as we will

see presently, okay? When you have some additional information here and information here,

this group will be trapped between them. 

So, you can get a lot of information on this one if not completely okay? Suppose two of these

groups are both . Then this middle one will be 0  So, such things we will have to keep using.

These four properties are so fundamental, okay? they have been raised to the status of axioms

for homology theories, There are some more of them, which will take consider a little later,



but now, we will come to some other properties of the singular chain complex which are

special to the singular chain complex itself but may not be shared by other homology groups.

Okay? some of them may be true, but they are not made a part of the axiomatic set up.
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So, here is an extra property of homology. The homology of path components: I have put it as

an example, rather than under properties  . So, you will have more properties later.

Suppose you have a space  which has path components  indexd by . Clearly, 

is a disjoint union of  ’s. Okay? Since   is path connected, if you take any singular  -

simplex, namely a continuous function  from  into , it will be completely inside one of

the ’s, okay? 

Therefore, the set of all singular simplexes of   is just the union of the sets of all singular

simplexes of  , the union taken over  . Thus the basis itself is partitioned like this,

therefore, the free abelian group  over that will be the direct sum of the free abelian

group over each of sets of singular simplexes of . So,  is a direct sum of ’s.

Using one of  the first  things that  we proved  for  the homology of  a  direct  sum of chain

complexes, we conclude that the homology  is the direct sum of  taken over

, okay? 

So, here we have used the construction of the singular homology not just some functorial

properties and so on. Okay? It comes out of the property of continuous functions on path

connected components. Alright? 
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Now, we will do some more thing. These things are concerned in the general construction

also. But this one is motivated by combinatorial aspects. The reduce homology and  of a

path connected space. Now, why suddenly I want to take path connected space? Because to

compute  the  homology  of  any  space  ,  by  the  above  discussion,  you  have  to  do  the

homology computation of each path component and then you may simply take the direct sum.

Therefore, you are going to concentrate on computations of path connected spaces, okay?

Presetnly, we shall do this at least for  , okay? So, let us compute   for any path

connected space , Okay? What is  ? The boundary operator on  is  and therefore the

kernal is the whole group , therefore   is the quotient of   by the image of  

from  to . 

What is ? By the very definition you take the set of all functions from  to ,  is just a

single point, functions from a single point is nothing but a point of , and therefore, this set

is   itself.  That  means   is  the free abelian group over  . For any one singular  -

simplex sigma in  , the boundary of   is nothing but  , where   are the

vertices of 

So, we define an augmentation map, usually denoted by  from  to the integers.  (This

the map that I was mentioning that is going to be generalized. Right now it is motivated by

our computational need.) So,  is defined by this formula  is equal to   is a

free abelian group over .  is just the infinite cyclic group. So, take  for all 

and extend it linearly.  



That is  just add all  the coefficients  and that is  the function  ,  okay? Then   is  surjective

homomorphism because  is non empty. I have to start with a non-empty space okay? Now

 is  for all , because  consists of two terms one is positive sign and another

with negative sign, the sum total of the coefficients is zero. So,  is 0 for all -simplexes.

Therefore,  itself is 0, because the singular -simplexes form a basis for . 

The surjectivity property of this   will be taken as a definition later on in the definition of

augmentations for arbitrary chain complexes. Right now, what we are interested in is how

does this help us to compute , okay? 
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Finally,  what  we want  to  show is that  kernel  of   is  equal  to  the image of  .  One way

containment is already seen. Now, I want to show that kernel of  is contained in the image of

 okay? So, for this consider an   with  , an element in the  . Like

, you know the sum total of the coefficients must be . Take such an element.

Take any point . Okay? 

 is path connected. Therefore, you can join   to all these  , okay, by some paths.

What do you do? Select a path from  to  and call it , Okay? Each  can be thought of as

a continuous function from the closed interval   into   and hence as  a  singular  -

simplex.  Now,  you  look  at   and  its  boundary  .  That  is  nothing  but

. 



But this summation is  so, therefore,  of this -chain is  This proves that the kernel

of  is contained in the image of . Therefore, the image of  is actually equal to kernel of .

It  follows that   which is   divided by the image of   is  the same as  

divided by the kernel of . By the first isomorphism theorem this is isomorphic to the image

of  which is the group of integers.  

So,  we  have  computed  that   is  isomorphism  to  ,  okay?  whenever   is  path

connected. Note that just connectivity is not enough to conclude this, by the way. You can

give easy counter examples. okay? 

(Refer Slide Time: 32:18)

The homomorphism  to  is called the augmentation, okay. Using this we extend the

chain complex by altering it only at   level, okay. So,  is defined as follows:

 for   non negative,  equal  to   for   and equal  to   for  .

Accordingly the operator  is taken to be the same as  for  positive,  and 

for .

 is  called  the  extended  or  the  augmented  singular  chain  complex.  If  you  look  at  the

homology of this one okay, that will differ only in -level okay? Everywhere else it is same

as the homology of  We call the homology of  the reduced homology groups of  and

denote it by .



Clearly,  for all . But in dimension ,  direct some with  will be

equal to . So, the reduced homology is reduced by one factor  exactly at the -level.

(That is why it is called reduced homology.) In particular, for a path connected space, 

is will be also . Without a twiddle, namely, the unreduced -th homology is ; that is what

we have proved, but this  factor goes away here. So,  will be  okay? So, that is what

you have to remember. Okay? 
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Now, I will tell you something about why this kind of reduced homology is important. We

have seen that for a contractible space, the homology is the same thing as homology of a

point. And for a point space, we have seen that  is .  is the infinite cyclic group .

and everywhere else it is  . Whereas if you take the reduced homology what happens now?

the  entire  homology  will  be  ,  even  at  the  -level.  You  know  psychologically,  what

mathematicians would like to have is that for a contractible space all the homologies are . 

That would be a neater conclusion to have. That was not the case with the usual homology

that we have defined.   of a nonempty space always survived, with infinite cyclic factor.

So, you make a slight modification like this augmentation, which looks somewhat unnatural

okay? Later on, we can make it functorial also, okay? So that the homology of a contractible

space  completely vanishes.  Okay?  So this  was  perhaps  the motivation for  considering  is

augmentation and reduced homology. Okay? 
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But note that for any non-empty subspace  of ,  remember, by definition,  is given

by a short exact sequence   to   to   to   to  , Right? So the extra   factor

appears in both the first and second term and hence disappear in the third one. So what you

are left with is that  is also equal to . Thus there is no change in the  and  for a

pair  where  is non empty. 

Therefore, the whole reduce homology for a relative pair when  is non empty is the same

thing as homology for the ordinary thing, without reduced, there is no change at all. Okay?

Now, what you can go back to the long homology exact sequence here, you can put a tilde

everywhere here, no problem, but when you come to the index , you have to be careful. 

All  that  you  must  do  is  directly  apply  the  proposition  to  the  short  exact  sequence  of

augumented chain complexes to obtain the long exact sequence which will be identical with

the long exact sequence of the unreduced homology except for the tail  end:   to

 to   to  . Even here, the first and the fourth terms coincide with the

corresponding terms without tilde. Only in the second one and third terms there is a change.

So, that brings us to the another very important property which is much more topological than

whatever you have discussed so far. Of course one of them was homotopy invariance. And

the other one was path connectivity. Okay. The next one is much more topological and that is

called excision. We will study it separately next time. Thank you.


