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Today we shall start the study of singular homology, which is one of the most  important

homology theory.  There are different  approaches.  Our approach is  to directly construct  a

single chain complex associated to topological  space,  discuss  its  basic  properties such as

some functoriality, dimension axiom, additivity, excision and homotopy invariance etc. some

of them without proof to begin with. Missing proofs will themselves be given in a separate

section.  

We shall also study some properties which are special to singular homology. It may not be

shared by other homologies and then we shall compute the singular homology of the spheres

and the relative homology of the disk modulo the boundary of the disk. So, this is the plan.

So, let us begin with the construction directly. 
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Take a topological space, fix an integer . We are going to define the chain groups. So,

for the first time the chain complex is going to be a non-negative one. For negative integers

we are going to take them all to be . So, for , a singular -simplex in  is nothing but a

map from  into , where  denotes the standard -simplex in  which is the convex

hull of the standard basis elements .

A singular  -chain in  , we mean a formal finite sum of these singular simplexes, i.e. an

integer combinations , where  is a singular simplex and  is an integer. The sum is

a  finite  sum.  You  can  add  any  two  chains  in  an  obvious  way,  namely,  adding  the

corresponding  coefficients.  So,  the  rule  is  that  if  you  locate  a  singular  simplex   with

coefficients  and  in the two terms to be added, then in the addition you put  as the

coefficient of .

There is an empty sum and that is  , the identity element for this addition, wherein all the

coefficients of each singular simplex is taken as .  
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The set of all -chains in  forms a free abelian group with a basis as the set of all singular

n-simplices  in  .  So,  it  is  a  very  huge group and  we should denoted by  ,  (  for

singular). And by definition,  should be taken to be  for  negative. And finally, the

total grade group   is direct sum of   over all integers  . So, we have defined a

singular simplex and then a chain and then made a group out of these n chains then we have

taken the direct sum.  So, now we have a graded abelian group. 
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So, now we want to make it into a category. So, given a map from  to  if you have a -

simplex  in , by the very definition, it is a continuous function from  into , you can

follow it by , you will get a singular -simplex in . So,  goes to  defines a map from

the set of singular -simplices in  to the set of singular -simplices in . Any set theoretic

function can be extended to a unique homomorphism of the free abelian groups in the natural



way, namely,  will go to . That is  You can write  outside or

inside. It is the same thing that will give you a graded homomorphism  from  to 

and the degree of this homomorphism is . -chains will go to -chains. Once again it is very

easy to verify that if you have map  from  to  and a singular simplex in  first you take 

of that then you take  of that it is the same thing as directly taking  circ of that, because

 is the same as . 

Moreover, if  is the identity map from  to , clearly  is identity of . This is all that

is  involved  in  saying that  the association   going to   and   going to   defines  a

covariant functor. So, from the category of topological spaces the category of graded abelian

groups you get a functor. So, graded abelian groups form a category that we already know.

So, this is the meaning saying that this construction categorical. So,  to  is a covariant

functor from the category of topological spaces to category of graded groups. 

Now, we are not satisfied with just that much because we want to do homology. First thing

we want to do is to convert   into a chain complex. That means, we have to define a

boundary operator here, a morphism  of degree  such that  is . That is our next task.
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But before that, let us see what happens under subspaces, i.e., some special properties out of

functoriality property. If  is a subspace of , there is a natural way  will be included in

, namely, if  is a singular -simplex in , by composing with the inclusion map  from

 to , you can just treat it as an -simplex in  also. So, at the set theoretic level itself -

simplexes in  will form a subset of all -simplexes in . 



Therefore, the free abelian group over the smaller set will be a subgroup of the free abelian

group over the larger set. This way,  become a subgroup of . This allows us to

take the quotient group   by   and we should denote it by  . Note that

 even though it is a quotient group here, there is a nice about it, namely, it is also a

free abelian group. What is a basis? The set of all  those  -simplexes in   which are not

contained in . If  from  and into  has its image not contained in  then this will be one

of the generators for . So, this is also a free abelian group for each . 

Of course, by convention because  is defined as  for  negative, similarly,  is

also defined as  for  negative. Once again if  is empty then  is just the  group. So,

 is nothing but  in that case. Finally, if you have a map  from one pair 

to  , that means a continuous function from  to  , so that   is inside  , then as

seen before   is  mapped inside   and  hence  you would  get  a  morphism from

 to .  

So,  this  consideration  will  tell  you that  the association   to   also  forms a

covariant functor.  can be thought of as a special case of the when set  is empty. This

is another way of looking at it. So, simultaneously we have defined two functors here one

from the category of the pair of topological spaces and other one on the category topological

spaces. 
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Similar to , we define  to be the direct sum of 's. Now, let us make

them both into a chain groups. The construction for this one is the same for the cases. So,



recall that we use  to denote the direct of countably infinite copies of . This is a standard

inner product space. 

So, for each , there is a face map or face operator  from  to  which is some kind

of a shift operator. If you have not heard of shift operators, don’t worry, here is the definition.

We use the standard basis elements basis elements of   to express it.  For example,  the

operator   does  not  shift  the  basis  elements   for  ,  first   elements,  are  not

affected. The -th element  itself and all other , are shifted by one place, So,  is

going to  for . Of course, we extend this to a linear map over all of . So, in effect,

each  is an injective linear mapping which will miss one of the basic elements in its image

viz.,  itself. So, once you define it on the basis elements you extend it linearly. These are

called the face operators why they are called face operators? 
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Look at this picture. The line segment from  to  is my . This this edge. Here  is  the

standard -simplex, which is the convex hull of  and . So, what does  do?  starts

shifting   to   and   to   etc. and is linearly extended. So, this edge goes into the edge

. That is a -face of the -simplex . You can see that this is opposite to the vertex .

So,  maps the -face here to the face opposite to . Like this  and .

So the -face is mapped onto the -face opposite to . Similarly,  will map the edge 

to itself. No shifting at this stage. So, this edge is opposite to is . 

So, this simple example illustrates the behaviour of the face operators. We hope that now

you understand why they are called face operators. This simplex is put as a face in the next



one. You can compose two face or more operators, that will put smaller simplexes into larger

and larger simplexes as faces.  
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In general, note that  carries  on to the -face of  opposite to the vertex .

All  are injective and order preserving.

So, we shall denote each  restricted to any  also by the same symbol. Its image will be

in , but we will not use separate notations for this that will be too much of cumbersome

notation,  the exact meaning being understood by the context.
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Now, the boundary operator on  can be defined easily. The face operators from 

cover the entire of the boundary of  . Taking a clue from the integral calculus,  we can

express this fact in an oriented fashion. 



For example, here look at the boundary of . I can take first the edge  followed by the

edge  and then followed by the edge . Note that the last one is not exactly the

image of  under  but in the opposite direction. Therefore I should put a negative sign on

this.  So,  this  motivates  the  definition  of  the  boundary  of  the  identity  n-simplex   and

thereby the boundary of any singular -simplex in general. Whatever you have to do, do it for

the identity simplex take its image under . Thus we can define  to be  which

should be the alternate sum    

We apply   for the whole sum or equivalently   taken inside the summation. So, this is a

definition of the boundary of any singular  -simplex   as a  -chain. On the right we

have just one singular simplex but on the right we have a -chain. And then we extend

this  one  linearly  over  the  whole  of   to  obtain  a  homomorphism  from   to

. 

So, that will also give you   from   to   also, because if   were taking

value in , then all the maps  for all face operators also takes value in . Easy to see

that. Hence the same  factors down to give a morphsim on the quotients. So simultaneously

we have this morphism both for  as well as .  

So, remember we have defined  is to be  for  negative therefore, the boundary of

another you defined for a , as soon as you hit this index with negative then there is no

question this has to be  , so we will  define this also  . So, that completes definition as a

homomorphism of degree  , but we have yet to verify why  is  ,   is   is what

you have to define that is a straightforward computation. Nevertheless, we will do it  you

know in a systematic way. 
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So, the statement of this  proposition is that   which is by definition the direct

sum  over   of   is  a  chain  complex  and  the  association   leads  to

 is a functor. The last part is already verified, property we have already verified.

So, it remains to verify that  equals to , which is a straightforward computation. 
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For which you need one of  the interesting properties  of  this face  operators.  The relation

between the composites of two face operators take in different order, namely we have this

lemma: If  then . Thus all the composites can be re-expressed so

that the indexing is always increasing. So, now the proof of the lemma. 

If  ,  then   and   all  of them fix   and hence both sides fix  . Next

consider the case . Then  is equal to . Now apply  on . There are two



subcases.  If   which  is  the  same  as  ,  then   itself.

Otherwise it will be . 

So, this is the combined formula for  . I want to say this is equal to  .

So, what is   in the first  subcase when  ?   is  just  .  But then

 will be equal to . 

On the other hand, if , i.e., in the second subcase,  and then  of

that will be , because . This proof is usually left to you as an exercise, but here

I have proved it. 
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Now, we can now prove the proposition in a very elegant way. First we shall show that  is 

for any singular  simplex. Then by the linearity it will be follow that  of any chain is also

. So, this makes sense for  only. If  is  or , then  is already  simplex and 

will be automatically zero. So, there is nothing to prove. So, you can assume . 

So, by definition  is  . The summation has certain limits depending

on . but we need not bother about them, except that it is a finite sum. Infact,  terms will

be  there.  So,  if  we  apply   once  again  we  get  a  double  summation  over   of

. 

We now break this summation into two parts, first the sum of all those  where  and

second one is the sum of all those  where . In the second summation, I interchange



 with  Now, what happens is that the first index is again less than or equal

to the second index. So term by term there will be a one one correspondence in the set of

terms occurring in the two summations However, the signs are opposite one being 

and the other corresponding term having .

So, do that systematically as follows: put  and  in the second summation. Then

 is  the  same  as  saying   and  hence  I  can  write  the  second  summation  as  the

summation over   of  .  This is  precisely the negative of the first

term.

(Refer Slide Time: 29:45)

Given the map  from  to  the fact that  defines a chain map follows from the

fact that in defining , what we have done is to compose  with  on the right side? And

how is  is defined?  is defined by taking composition with  on the left side. So the

law of  associativity  of  the composition of  functions  is  at  work here.  That  takes  care  of

functoriality.
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We now make a definition. The relative singular homology group of a pair   is the

homology of the chain complex . We will just write it as , by-passing the

notation . When  is empty, we just write it . These are called the homology

groups. Thus the construction of the relative homology groups of a pair  is over. 

Once again, if we have morphism  from  to , i.e., if you have continuous map 

from  to  which takes  to , then we have the chain map  from  to ,

which  in  turn  gives  you  a  homomorphism  of  the  homology  modules.  Therefore,  this

association becomes functorial. 
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One more thing. I can I make a remark. If we had started with an arbitrary commutaƟve ring  ,

instead of  , then in the   you allow  to vary over the ring  , the scalars from .

What you get is the free module over  with the basis consisƟng of all singular simplexes.  So, then



we would  write  )  etc.,  Instead of  ,  you would have   here.

When the ring  is , the way I have done, we are not going to expressly write the , that is all. So

the enƟre construcƟon of this one would have been possible over any ring. So, this is where we stop.

Next Ɵme we will start the properƟes of homology. Thank you. 


