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So, we have done some algebra, a preparatory work before studying the homology of topological

spaces,  we should do one more algebraic  preparation though it  is  not necessary immediately

okay? It just fits into the kind of preparation that we are making. Strangely, the title of this talk is

Euler characteristic which is very much topological but here we are going to give it a completely

algebra treatment.

The  Euler  characteristic  will  be  discussed  again  and  again  in  this  course.  So,  we  are  only

initiating a discussion now. So, here is a definition in the category of -modules, where  is a

commutative ring, preferably a PID and if you have difficulty as I told you right in the beginning

you can just assume that  is the ring of integers and modules are just abelian groups. 

By an  additive  function  on  this  category  we  mean an  integer  valued  set  function   on  the

isomorphism classes of -modules. The collection of all -modules is not a set but isomorphism

classes of  -modules is a set by axiom of choice. So you take a set theoretic function which



takes non negative integer values. It should have the following property: whenever you have a

short exact sequence of -modules  to  to  to  to  okay? You should have  must

be equal to   okay? So, you can call such a function a length function which is

studied in algebra at various levels.
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Clearly . What I want to say is that by a simple induction, it follows that any additive

function will have this property: namely whenever you have a finite exact sequence a finite short

sequence   to   to   to   to   to  ,  then  the  alternate  some  of   is  zero,

So, additive functions I have this property, viz., alternating sum whenever makes sense is zero.

So, how to prove this one? I have told you that a long exact sequence like this can be always split

up into short exact sequences and then for each short exact sequence you have the property. So

here is a chance to illustrate that principle.

So, let us name the first morphism in the sequence  from  to , just for the sake of writing

down the proof. Okay?
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I do not care what other morphisms are, the first one is  . So, I split up this one I do not go

directly to  but I go to  modulo image of . So, that is the cokernel of  right? So, this

quotient is surjective so if you look at the sequence  to  to  to  to , this is a short exact

sequence okay? Therefore,  + (cokernel of ) = , right?

So, I know this much. Now I want to go here  by image of , this map  to , whatever it

is, on image of  it is , therefore it factors down through the quotient map  to cokernel of 

and gives you this morphism here. And that morphism is injective because of the exactness of

the original sequence at . 

This means that at this point cokernel of   the new sequence is exact. From here onward the

image of this  is same thing as the image of this  whatever and beyond that the sequence is

not changed okay? Now look at the length of the new sequence, it has come down by  okay,

which you may relabel as  to  to  ... apply induction on this one to get that the alternate

sum is zero. Adding these to equations with correct signs, observe that the two extra terms viz.,

(cokernel of  ) cancel out giving you that the alternate sum of  is zero for the original

sequence. 

So, an additive function has this property whenever you have finitely many terms in an exact

sequence, then the alternate some is   okay? So, this is this should be a very good measure to



measure of deviation of a chain complex from being an exact sequence. You see at least in the

case when you have only finitely many terms in a graded module.
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So, we have got our starting point example now, namely, in the category of finitely generated -

modules over a principal ideal domain. There is a structure theorem there just like in the case of

finitely  generated  abelian groups,  modules  over  the  integers  okay?  Every  finitely  generated

module can be written as a direct sum with a free module which is of finite rank and the torsion

submodule. 

So, for every finitely generated   module over a ring, the rank function is  one of  the most

important  functions and  that function  is  an additive function.  The rank of  a  direct  sum two

modules is equal to the sum of the ranks. For this additive property, you can produce a little more

general one, namely, if you have an exact short exact sequence of finitely generated -modules

okay over a PID, then the alternate sum of the ranks is .

The simplest case is when  is a field. Then what are finitely generated modules over a field?

They are finite dimensional vector spaces.  If you have a short exact sequence of vector spaces, 

to   to   to   to  , the rank-nullity theorem says nothing but that the dimension is an

additive function,  namely, alternate sum of the dimensions is . 



So, this is a very nice name, called rank nullity theorem rank for a linear map: the dimension of

the image and nullity of the linear map (i.e., dimension of the kernel) add up to the dimension of

the domain. This term `dimension' is replaced by the term `rank' in the case of arbitrary rings.

For arbitrary commutative rings this is a difficult notion. Sometimes the rank may not be defined

properly okay? In general it is not defined alright. But for a PID, it is well defined. There are

other cases also where it is defined, not necessarily for PIDs only. But we do not want to get into

that kind of algebra here okay?
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So, let   be an additive function on some category of  -modules. A chain complex   of  -

modules is said to be finite type with respect to the function , (  is fixed, and all  are objects

in this category, okay?) If  is  for almost all , that means, only finitely many terms may

be nonzero.

So, I am cooking up this definition, because I want to take alternate sum, so if infinitely many

non zero terms then the sum does not make sense okay? Values of   are integers, there is no

question of convergence here. Indeed, convergence means that after a finite stage all term must

be zero. must be  , okay? So that is why I have put this condition in this definition. So, such

chain complex   will be called finite type with respect to  . If you change   this may not be

finite type okay? The given  may not be finite type with respect to one function  and may not

be so with respect to some other function . Be careful about that. 
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So, what is of very importance for us is that if  is a PID and  is the rank function okay? Then

saying that  is of finite type with respect to the rank function is the same as saying that all 

are of finite rank and most of them have rank equal to . For this special case, we simply refer to

 as of finite type. When you just say it is finite type that means we are we are interested in  as

a PID and the  is the rank function. For examples,  could be ring of integers  is the usual rank

function. Otherwise, i.e., in the general case, I have to mention specifically the additive function

with respect to which we are taking finite type. That is just a convention.
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Thus, for example when  is , a finite type chain complex of abelian groups need not be finite

type with respect to some other additive function other than the rank function. Can give or think

of another such additive function? 
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Now here is the theorem that we are interested in okay? What does it say? The rank function

defined for a finite type chain complex now gives you something interesting on the homology

okay? Let  be a chain complex of -modules and is of finite type with respect to an additive

function  . Then the alternate sum of   of  's is equal to the alternate sum of   of  's,

okay? Indexing must be carefully chosen okay?

You cannot change the indexing otherwise there will be a sign change here. Just by shifting all

indices by , the whole sum will change the sign right? So be careful about that. So, for a chain

complex of finte type, the alternate sum of 's is the same that taken over homology. If the chain

complex is actually exact then all the homoogy modules would be zero and hence the alternate

sum would also zero for homology as well as cor the chain complex. That is a very weak special

case of the statement. The present theorem though not so string is very very useful theorem.  
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So, here is a proof which is simpler than the for the earlier lemmas where we used splittings. For

each  , concentrate at one . If you take the image of   as the codomain of  , and not the

whole of , you get a surjective map. It follows we have a short exact sequence  to 

followed by the inclusion map to  followed by  to its image to . Therefore we have  is

equal to . This is the first identity. 

Similarly,  since   is   modulo  ,  we  have   is  equal  to

. Now take the alternate sum over  and substitute for 's

from the second into the first identity. Note that the terms involving  cancel out and we

get the required formula.
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So, now we make a definition, following this great observation okay? Let  be a PID, and  be

a graded module of finite type. I recall what is the meaning of this, namely, most of the graded

components of  are zero and the rank of the remaining finitely many of them are finite okay?

We then define the Euler characteristic of  by this formula. This is the standard notation 

okay?  is graded module, not just one single module,  is the sum over  where  ranges

from  to  (but any way, it is a finite sum okay?) of , okay? 

So, this is called the Euler characteristic of . You could have defined  also with respect

to any other additive function. So, you can call that as of Euler characteristic with respect to ,

but without any qualifier, just the Euler characteristic just means summation of . 
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So, whatever you have proved just now, the theorem says that for a finite type chain complex of

-modules over a PID, the Euler characteristic of the homology is equal to Euler characteristic

of the chain complex itself. So, this is the algebra that we needed later on. so we have established

that one.
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The above theorem tells us that the Euler characteristic of a finitely generated chain complex is

the same as the Euler characteristic of its homology groups. In our context,  is either the ring of

integers or a field. We could have taken  equal to  or . Then the rank is nothing but the

dimension of those vector spaces. So, you should not worry much even if you do not know what

are PIDs and what are modules over PID etc.



The notion of Euler characteristic plays a very important role in the development of algebraic

topology, differential  geometry,  analysis  etc.  It manifests  itself  in a  variety  of way from the

simple observation, namely, for any planar graph, number of vertices minus number of edges

plus number of faces is  equal  to 2. This is the famous formula of Eular  for a planar graph:

number of vertices minus number of edges plus the number of domains is always equal to 2. So,

this was the observation of Euler. We can say Euler was the great grandfather of topology.

But this simple thing has now become so great you know, it manifests in so many other ways.

There are at least half a dozen different definitions and then you can prove this is equal to that

and so on, at various places and then you take one of those definitions and generalize it and so

on. So, you get things such as Atiyah Singer index theorem for elliptic differential operators etc. 

So, many other things they are all interrelated so you take one aspect of it, generalize it and do

something and so on. So just this one single concept of Euler has created a lot of mathematics.
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So, let us do one more slight variation of this one, if not all. This is called Lefschetz number.

This will also be used later in this course okay. So, we fixed the ring  to be a PID,  is finitely

generated module over . Then tor  denotes the sub module of all torsion elements in ,  in

 is called a torsion element if there is  in  such that  and  not equal to zero.



It is just like finite elements of finite order r in an abelian group. The set of all torsion elements

denoted by  is a submodule of  and the quotient  by  is a free module of finite

rank. This is not a general result but it is true for PIDs anyway, okay?

The rank of this quotient is equal to the rank of  itself. You can take this as a definition. Any

morphism  from  to  induces morphism  from  by  to  by  because the

torsion elements always go to torsion elements under . 

You can fix a basis for a free module, since there is always a basis right? You fix a finite basis

for . Then an endomorphism  can be written in terms of a matrix. So, if the rank is , then the

matrix will be of type  , okay? The trace of   is defined to be the trace of corresponding

matrix for  , okay? And one can verify that it is independent of a choice of the basis. This is

elementary linear algebra okay? Trace  of  a  matrix   is  the same thing as trace of  ,

because  equal to  that is what you have verified okay. So, same thing works here

with  trace  will  be  independent  of  what  basis  you  chose  okay.  So,  we  can  define  trace  of

endomorphism  itself alright now we are in business. So, now instead of  we are looking at

endomorphisms of . Instead of the module we are looking at endomorphisms.
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So, what we will do is a simple exercise here okay? Similar to what we have for exact sequences.

Given a short exact sequence of finitely generated  -modules, as shown, the additivity of the



rank function tells you that rank of  is equal to , right? So, we generalize

this here. Take a short exact sequence here and an endomorphism of the exact sequence okay?

That measn a commutative diagram consisting of three vertical arrows. okay? The trace of this

can  be  defined  trace  of  this  can  be  defined  trace  of  this  can  be  defined  right?  These  are

endomorphisms, okay?

The exercise says that the trace the central one  is equal to  okay? So, first

look out for the special case of the vector spaces. Then it is simple linear algebra. The general

case is exactly the same because you are doing matrix theory okay. That is hint. You can write

down the details.
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Next let us take  a graded module of finite type and  from  to  an endomorphism of degree

, okay? Define the Lefschetz number  as the alternate sum of the traces of  okay? Note

that   is  any  graded  module,  no  structure  of  chain  complex  or  exactness  is  used  in  this

definition. 

Now assume further that  is a chain complex also and  is a chain map of degree  and let 

denote the induced graded module endomorphism on the homology  . Then the claim is

. Exactly same as Euler characteristics of  and of . So try out these exercises.



If you do not get, we are there to help. This is just straightforward exercise I have not done it for

chain complexes.

This is not a difficult thing okay. So, thank you we will stop here now. Next time we are going to

introduce the most serious part of this section, namely, the construction of singular homology

groups. Thank you.


