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So, far we have introduced the various notions such as graded modules, chain complexes,

short exact sequences, long exact sequences, diagram chasing technique etc. then using it,

derived Four Lemma, Five Lemma 5 and then the big result,  namely, the Snake Lemma,

okay? This Snake Lemma is going to give you a good application very soon. We will do that. 

So,  guided  by the experience  in  complex analysis  or  in  differential  equations  and so on

studying the differential forms and so on, we are led to measure the deviation of a chain

complex from being exact. And that is precisely the role of these homology modules, or the

homology groups okay? Associated with a chain complex. By the very definition a chain

complex has a self operator  of degree  such that  is , which just means that the kernel

of  contains the image of .

So, how large is the difference between the image and the kernel? That is what you are going

to measure now. Being abelian subgroups or being submodules of one another, the quotient

makes a sense as a module on its own. So, a nice way to measure this deviation is to take the

quotient. That leads to the definition of homology groups as a graded module now okay?
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So, let  us make a formal definition.  Start  with the chain complex   of  -modules.  The

homology groups of  is going to be a graded R-modules, okay, denoted by  which

is the direct  sum of  , where each   is a module and I am taking direct over all

integers. Recall that  itself is a direct sum 's right? So, what are these  's? I have to

define. After that  is defined as a direct sum okay.

So,  is define as that quotient of kernel of  by the image of . Remember 

starts from  to   and   starts from   to  . So, kernel and image are both sub

modulus of  okay. So, the image of  is contained inside the kernel of . Therefore the

quotient makes sense and this will be again an -module okay? Define  for every  like

this and take the direct sum, that is the entire homology group of . 

So, what you have done is that you have  associated to each chain-complex a graded module.

The beauty of this is that you can make it into a functor that is our next aim here.
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If you have a morphism from  to  of chain complexes, (remember a morphism of chain

complexes consists of a sequence of module homomorphisms  from  to  such that they

commute with the corresponding boundary operators,   here and   there, i.e.,  compatible

with the structures okay. Therefore what happens is that a chain map has the property that

kernel of the  will be contained inside the kernel of  for each . And image of  will

be contained in image of  under . This is an easy consequence of the rule 

okay? And hence by the isomorphism theorems of modules or just for abelian groups, we get

an induced graded homomorphism which I will shall denote . It consists of a sequence

of homomorphisms written as  from  to .

So all the time, I am using a star to denote the graded components. Namely,  restricted to

 is  which takes kernel of  to kernel of . and image of  into image of  and

hence induces the -linear map  of the corresponding quotient modules. 

So, what happens is that if   from   to   is another chain map then   will be

.  Similarly,   is  equal  to  Identity  of  .  Thus   will  be  a

covariant  functor  from where?  From the category of  chain complexes to  the category  of

graded modules. When you pass on to the homology, there is no chain complex, you have

lost the 's here, okay only graded module structure remains.

So, this functor is called the homology, homology associated to a chain complex. Only later

on, we will bring in topological spaces.
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The simplest thing now to prove is the so called weak additivity of the homology functors,

namely,  homology commutes  under  direct  sum.  The homology of  a  direct  sum of  chain

complexes is isomorphic to the direct sum of homology of chain complexes. It  is easy to

verify this one. A routine. First do it for direct sum of two chain complexes okay? But then

you can generalize it. There is nothing is very special about it, the same argument will go

through any number of components, finite or infinite,  in the direct sum,  okay.

But such verifications, we will leave it to you because these will give you practice with the

homology groups, homomorphisms and abelian groups and so on okay.
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So, above property of homology, namely direct sum of chain complexes will give rise to

direct sum of the corresponding homologies okay? This property, you can call it additivity of



the homology okay.  So, what  we would  like to is  to go back to  the exact  sequences  of

modules and so on and of chain complexes like this.
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Let  to  to  to  to  be a short exact sequence of chain complexes. The middle one may

not be a direct sum of the other two. Question is how its homology related to the homology of

the other two chain complexes? This is what we would like to know. You expect that the

three homologies will be also be related by the same kind of short exact sequences like this.

In other words I am asking specifically the following:

Suppose you start with a short exact sequence of chain complexes. Then do you get a short

exact sequence  to  to  to  to ? 

Notice that if  and  are the corresponding chain maps, then we have  is  and hence it

follows that  is also . But still the exactness at the chain level does not give

the exactness at the homology level. Indeed this is precisely what we want to study now.  

Starting with the observation that homology of a direct sum is isomorphic to the direct sum of

the homologies,  we ask same question for  homology of  a  short  exact  sequence  of chain

complexes. Expecting that the homology is a direct sum is too much anyway. Even a short

exact sequence of homology groups seems to out of question. 



However,  you relax a little bit  and bring your expectations a little lower,  then you get a

beautiful  positive  answer.  True  statements  are always  beautiful.  And that  is  given by an

application of the snake lemma in this case, okay?
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So, this is the kind of additivity we will be interested in. However the answer in general is in

the negative. So, we are forced to refer to the additive property of homology groups as in

theorem 3.1 okay, as weak additivity. The best thing that we can say about this additivity of

homology  follows  from theorem 3.2  below which  is  an  easy  consequence  of  the  snake

lemma.

(Refer Slide Time: 13:05)

So, here is theorem 3.2 that we are going to present now. This is the best thing that we can

show. So, what is the statement? Given the short exact sequence, now I am writing down the

maps also here   and  (Maybe earlier, I used the notations  and ) That is a short exact



sequence of chain complexes. Remember this means that  there is  a whole lot of  -linear

maps indexed over integers, for each  from  to  from  to  etc., and there

is  a  commutative diagrams which mean compatibility with the boundary operators.  Then

there is a functorial long exact sequence of homology groups, and it is represented as follows:

 indicating it starts from somewhere because this  is going from  to  right? So, at -

th level what happens?  , the corresponding   landing into  , then  

landing into . 

But from here where do you go? It is not the zero module here. This is the point okay? What

you will get is , then two more terms again repeat but this time indexed by ,

upto . Again the next module at the  level and so on. So that is the meaning

of this dot, dot.

So, this is the long exact sequence  of homology groups in the statement. And then there is

also this word `functorial'.  Now it  is  easy to guess the meaning of  the functorial  in  this

context. You have already made a category whose objects are short exact sequences. Also

there is the category of long exact sequences. This association is a covariant functor from one

to the other. 

All this is a consequence of the snake lemma. Now for each , you have a snake appearing

here. You see this is going to be our connecting homomorphism  and the corresponding to

that we are having the  there also. We are not going to introduce too many notations. such as

 etc. So,  was there to remind you that this is also something to do with that, we are putting

the same  here, So, just to keep reminding about its origin in the snake lemma. Let us see

clearly what we got here.
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The short exact sequence of chain complexes easily gives rise to a sequence of snakes by

taking  and  etc for each . We can then pass on the kernels and cokernels

etc, to get an associated 6-term exact sequence as given in Snake lemma. If we piece them

together we get the homology long exact sequence. The functoriality of this association is

also built is the snake lemma itself. 
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But you have to guess how to get these homology terms out of this kernel and co-kernel. That

turns out to be an elementary module theory (or elementary abelian group theory), okay?

Instead of directly taking  's, I am going to take certain quotients and submoudles. The

chain homomorphisms   and   in the original short exact  sequence induce chain maps of

submodules and quotient modules. I am not directly going to the homologies here okay.

So, for each , this is my snake as show in this diagram. The terms in the first row are the co-

kernel of  and  respectively, viz., the first term is for example, the same as  by the

image of . Similarly the morphisms are induced by  and  respectively. The terms in the

second  row  are  kernels  of   and  ,  but  one  index  lower.  And  the  morphisms  are

restrictions of  and .  

I have written  and  for these restrictions. We then have a snake for each   as follows.

Thus out of one one single short exact sequence, I am getting these snakes one for each  .

Okay? From the snake lemma,  I  will  get  a  -term exact  sequence.  Putting all  the  -term

sequences together, I will get the long homology exact sequence. So these are the two steps in

the proof.
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Remember that a snake has a  term at the end of the top row and a  term at the beginning of

the bottom row. Temporarily, you can name them  and  and apply the

snake  lemma to  that  take  the  kernels,  and  co-kernels  to  pass  on  to  the  six  term  exact

sequence. Finally, you have to see what are those 6 groups. They happen to be the 6 terms

which I am interested in, namely these 6 terms and they will be connected by this  okay? So

the snake always gives you the 6 term exact sequence right. 

So, notice that first vertical arrow is the morphism induced by the original  from  to 

. Since it takes the submodule image of   to  , we get a well defined morphism from

quotient of  with Image of . Also, since it takes its value inside kernel of  we can

replace the codomain by  . Similar explanation (ii) valid for the second and third

arrows also. 
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By the second isomorphism theorem it easily follows that the kernel of this first arrow is

nothing but . Similarly, the kernels of second and third arrows are nothing but 

and . Exactly similarly, we check that the cokernels of these three arrows are nothing

but   and  ,  respectively.  Thus  all  the  six  terms  are  as  we

wanted. That completes the proof of the theorem. Thus the hard part of this theorem is taken

care by the snake lemma. 
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Let us now introduce an important concept here which is guided by the homotopy in the

topological spaces. But you may wonder how one got this. To understand this one you have

to wait a bit. (You will understand it if you have done something like Poincare lemma in your

differential topology okay?) So these things were cooked up from experience with proving

Poincare  lemma for  example,  which tells  you what to do using integration.  Here we are

converting everything purely algebraic way. So, if you just see this without knowing all these



background, you may lose the motivation. Why one does such a thing? So you have to just

mug it up till you see a little more and then you will start seeing more, and more, okay?

Given two morphisms  of degree  between two chain complexes you say they are chain

homotopic to each other if there exists a graded homomorphism  from  to  of degree ,

these are degrees  maps this degree  map such that  is f  okay.

It is easily verified (when I say easily verified there is work for you to do okay?) the map  is

a called a chain homotopy. If there is such a  then  and  are siad to be chain homotopic

okay? So, this relation chain homotopic is an equivalence relation. The important thing to see

is  that  if   is  homotopic  to  ,  and   homotopic  to   implies   is  homotopic  to  ,  the

transitivity, okay. So, this is not at all difficult. You have to just take the sum of the two chain

homotopies. 

The idea behind this definition will be clear when we consider the topological situation from

which it  has emerged.  So, that is  why you had bring in  this  important  concept  of  chain

homotopy, as illustrated by the following consequence in homology.
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Chain homotopic maps induce the same homomorphism of homology groups. Once you have

said this, verification is totally easy okay? So, you have two morphisms  and  you have to

take the  -th level groups and see what happens to   on  an element in  . An

element here is represented by an element  in the kernel of  modulo the image of . So,

take  okay? modulo the image of  in  right?



You have to show that  is also the same that is what you have to show okay? So, if you

look at this one  for any cycle   here, (cycle means an element   in the kernel of  ,

okay?) Therefore on the left hand side the first term is zero and the second term is clearly in

the image of . Therefore,   represents the same element in . So,  I have

proved it for you anyway. So you write down the details now that is all so exercise has been

taken away already just write down. Let us stop here we will pick it up from here next time.


