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So,  continuing  the  study  of  chain  complexes,  given  a  chain  map  between  two  chain

complexes which are themselves exact we need to dig deeper as to know how the nearby

components  are  related  okay?  How  will  the  chain  maps  influence  the  nearby  graded

components? This  will  prepare  us with a  powerful  technique known as diagram-chasing.

What this means? We will see when we actually study this and it is going to be an essential

tool in what is known as homological algebra okay? 

An important  result there, namely,  the snake lemma, okay? Before stating with the snake

lemma, I will give you a number of simple shorter lemmas which are all proved by this

technique, namely, diagram-chasing. 
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Consider the following commutative diagram of -modules and -linear maps in which the

two rows are exact. If  and  are isomorphisms, so is . This is the statement. 
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What is the picture? Picture is this one:  to  to  to  is one shorter exact sequence 

to   to   to   is the other shorter exact sequence, okay? Column wise, we have three

morphisms here , and . Of course, I do not have write these two end morphisms, they

are -maps. The whole idea is that the entire diagram is commutative, which means  is

the same thing as , similarly, . So this is the data. Okay? Now, what

is the conclusion? Suppose that  and  are isomorphisms then  is an isomorphism, Okay?

So, this is one way, one way conclusion not an `iff' type statement. So, since every map is

already  a  homomorphism of  modules,  all  that  you  have  to  prove  is  that   is  bijection

assuming that  and  are bijections okay? 



So, let us prove this by pointwise, namely, pick up a point in  and show that there is a point

in  which is mapped onto it by . That's all okay. Somehow I have to use these two facts

that  and  are bijective. Start with an element here, there is direct map to go here right?

But you can go here under  So pick up the element and look at  of that element. 

Now, you see, something nice is happening. This is surjective here, therefore I can pick up an

element here, Okay? Which maps onto that one, right? So, I could pick up an element here

itself, but after going here, I can come up okay? So, there is an element here, such that  of

that is equal to  of this . Now this  is surjective, so, there is an element  here  which

goes to this element under . So, what we have got is an element here if you come all the

way here it is the same thing here as if you come this way same thing as this element just

means that if you come this way also it is same element so, I have an element  here such

that  and  are both going to same element under  So, now I am in a good shape.

Now I can use the fact that this is an exact sequence of modules. elements are going to same

element under  just means that their difference is going to  under 

So that is in the kernel of , okay? But the kernel of  = image of  right? Therefore, the

difference element  is equal , some element here. That is anyway a unique

element because this is an injective map. So, that is some element here that is all, we need.

Now this  is surjective so, I can pick up an element  such that  Now, I can

complete the argument nicely. If you look at the image of that here okay. 

So, what does that element does under ? It will come to the same element here namely, we

have  is a difference of these two okay. So you add that element to the . That

will come to  under . So modify this  by the image of  under  okay that will map,

under  to the element . 

That  is surjective you see starting with here we went there and then observe that something

is happening and then we went this way and modify this element so this kind of technique is

called diagram-chasing. 

So, you can just glare at it to get the entire proof mentally. Writing down the proof without

the diagram, all these homomorphisms, images etc is a bit more difficult in any case. you



have to have this picture in your mind if not the picture on the paper. Better to draw the

diagram and then everything will be clear okay? That is the point of this diagram chasing.

The same technique can be used with slight modification in proving a lot of statements of this

type. 

The next one. Why  is injective? So what should I do? I take an element  such that  of

that element is . Okay? I want to show that   itself is  right? That is the injectivity. So,

come  here  it  will  be   here  also.  Because  this  diagram  is  commutative,  which  means

 But   is injective. Therefore  . So the

first thing is that I wanted to prove  is ,  at least I have proved , okay? 

Now use the exactness of the top row,   is  means it is in the kernel of  which

is equal to image of , so it comes from an element here. So this  is  of some  here.

Okay? But if you go this way and come here it is same thing as .

Some  .  Both   and   are  injective  and  hence  .  Therefore
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So, first you have seen the surjectivity, which might have taken a little more time. You see

the proof of injectivity take less time. Both the cases again and again same technique is used.

We shall now propose several such statements.
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So, let us leave the next two lemmas as exercises/ assignments to you to work out, but let me

state these results, very very important results, called four lemma and five lemma okay? So,

in the lemma 3.1 we had two sequences of five terms each out of which two of them were

zero. Now, we handling the cases when four or five vertical arrows are involved and none of

them is assumed to be zero. terms all. 
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So, I will just show the diagrams, because it is easy to explain with the pictures. In the first

lemma 3.2, there are 4 terms in each row, now Okay? Maybe nonzero maybe   and so on,

there is no assumption that the end terms being  and so on. And the two rows are exact. The

whole diagram is commutative. These are all -module homomorphisms. Okay? 

The  new  assumptions  here  are  that   is  surjective  and   is  injective.  These  are  the

assumptions on the end arrows. Now, there are statements:

(i) if  is injective then  is injective.

(ii) if  is surjective that  is surjective.

Okay, so you may get confused about these two statements, which one is what and so on.  To

remedy that best thing is that you write down the proofs. Practice a little bit Okay? Method of

proof  is  exactly  similar  to  what  you have  done in  the lemma 3.1.  But  unless  you try  it

yourself, you would not learn. Okay? 
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The five lemma is easier. It is a very powerful and result that is given in a ready to use form.

Here there are two exact  sequences of 5 terms and the terms are arbitrary,  none of them

assumed to be zero, okay. And the whole this is a commutative diagram of -modules and

homomorphisms. The statement is that if  and  are all isomorphisms then  is an

isomorphism. 

So, this is a direct generalization okay? One step generalization of the lemma 3.1 that we had

in which the end terms were . So, automatically this  and  automatically isomorphisms.

In this five lemma, I have made the terms arbitrary and put the condition on the morphisms to

be isomorphisms, okay. You can proof this directly by diagram-chasing or applying the four

lemma twice. 
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Now, I come to the central result of this section, namely, what is called a snake lemma which

is going to be a strong input from homological algebra. So, this time you have two four-term

exact  sequences (rows) top and bottom slight different  in shape. top on sending in   and

bottom, the other way around starting at . 
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Given a commutative diagram of -modules homomorphisms as shown in the diagram, there

exists a -module homomorphism , from the kernel of  here which is a submodule of 

to the cokernel of this map , (Remember kernel is just set of all points wherein  is  but

the cokernel is the quotient module   divided by the image of   by definition). This   is

called the connecting homomorphism. 

(What does it connect that is important thing here?) Look at the six modules obtained by

taking kernel and cokernel of   and . Because this diagram is commutative it follows

that   and   restrict to define morphisms from kernel of   to kernel of   to kernel of  ,

which we shall denote by  and  only. Similarly,  and  induce morphisms from corkerel

of  to cokernel of  to cokernel of , which we denote by  and  respectively. You may

use you elementary knowledge of first and second isomorphism theorems for abelian groups

(as well as for modules). So, there are morphisms like that okay. So,  these morphisms are not

shown in this picture because they are obvious morphisms they are there , . You can write

here, and you can write here  ,  if you want to be more careful. 



So, the point is that you have these two obvious sequences of three terms each being exact

and then all of a sudden there is the morphism  from kenel of   to cokernel of   which

connects them to give a -term exact sequence.

(Refer Slide Time: 19:37)

Moreover this assignment from the given data to  , the connecting homomorphisms has a

naturality  property?  What  is  the  meaning  of  that?  Of  course,  we  know how to  express

naturality property. So, you must make a category and another category and the assignment

must be a functor. So, what are the these categories here? I will explain that later. 

First let us understand how such fantastic morphism arise, and then various exactness parts,

namely, kernel of  equals image of  and image of  equals kernel of . Exactness at other

two places  are  easy okay,  because  they are true in  more  general  situation.  The new and

mysterious  things  are  about  the  morphism  .  So,  this  is  a  fantastic  theorem.  Even  the

definition of this is fantastic, okay? But having seen the diagram chasing as a technique in the

previous lemmas,  the surprise will be a bit less. Now we will see how it is done okay?
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So first take a look at this diagram. Come to the central rows:  to  to .  to  to 

, Okay? For each morphism  and  , I am taking kernel and cokernel to get a 6-term

exact sequences vertically, the two end modules being zero. What is elementary is that now

all the rows and columns are exact and the entire diagram is commutative.

The statement of the theorem is the existence of this delta with certain exactness properties,

connecting the first row with the fourth producing a 6-term exact sequence. Okay? So, here

you have to do some kind of diagram chasing but this time very systematically, go down, go

left, go down, go left, go down, or down-back-down-back-down. Okay, So these steps have

been indicated by double arrows. 

So, I have defined this map delta right from here to here. Take an element in kernel of  and

go down via the inclusion map to  .  Since   is  surjective,  therefore,  I  can pick up an

element in  which is mapped onto that by . So here, I have to pick up something, I do not

have a homomorphisms here that is why I have double arrows here. The single arrows are

homomorphisms, they are -linear maps. 

So I have to pick up some element here, which goes to that one Okay? Now, push it down

here come down to , via . If you look at the image of that under , it is the image of this

under  but that is  because it is coming from kernel of . Therefore, it is in the image of 

, so pick up an element in  which is mapped onto that under . 



This time there is no ambiguity because this  is injective. (So I get a unique element here.

But ambiguity is here already anyway.) Finally to push it down under the quotient map to get

an element of the cokernel of . Here also there is no ambiguity.

In any case, in arriving at this last element you do not know whether you will get the same

element each time. If somebody else follows the same steps does he get the same element?

That is the first surprise. The answer is YES. You will get the same element no matter who

picks up what element at various stages. Note that the ambiguity occurs only at the module

. From here to here there is no ambiguity. 

More precisely,  we must look at the difference between two pick-ups, right? I mean one

person picks up one element and another picks up another element or you may have picked

up  different elements at  different times, the difference would be such that under the map

beta it would go to zero. Therefore, the difference itself comes from , it is equal to  of

some  in . Now, look at its image under  in . That is equal to ( ). It follows

that if you look at the two elements that you have got in  corresponding to the two different

pick-ups, their difference is in the image of . Therefore, when you pass on to the cokernel

of , they represent the same element. 

So, whatever element you get here, there is a unique element. So call that  of this element.

So function  is well defined, okay? So, you see with the picture, it is easy to explain than

writing down symbols for so many elements etc., But you have to write down all this at least

once, okay. 

Now, the well definiteness implies a certain freedom in the choice of elements you pick up at

the module . That can now be used to show that this  is a homomorphism. So, to show that

this is a  -linear map, start with an element here, multiply by a scalar pick up the original

thing here and multiply by a scalar, that will go to the element multiply by the scalar. That is

at  the module  .  The  rest  of  the  steps  are  already  linear  maps.  That  proves  easily  that

Let us look at the sum. Suppose you have  and , two elements here in the kernel of .

You come here okay, to  and pick up say  and  going to  and  respectively under

. What will pick up for the sum? Just pick up the sum . Under , it will be mapped



to . After this everything is linear and so it follows that .

So,  is a homomorphism of -modules alright.
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So, verification of exactness of the 6 terms sequence has to be done now. Let us go back to

this picture. The exactness at Kernel of  and cokernel of  are general consequences of the

exactness at   and  . So, we need to check only that kernel of   equal image of   and

kernel of  is equal to image of . The two proofs are identical. So, I will prove only one of

them whatever you want Okay? They are all similar. So, let us say take the first one which is

happening in the submodule kernel of . 

So, look at an element here in the kernel of . In the definition of , when you come here to

 and take its image under the quotient map to cokernel of , what is the meaning of saying

that element in the cokernel is ? That it belongs to image of , okay. So, you get an element

in  whose image and  goes to the same element as the one that was you have picked up

under  . Therefore the difference of these to is the kernel of  . Now check that   of that

element is equal to the original element you started with. That proves kernel of  is contained

in image of . So the argument is again diagram chasing. 

Conversely, if you take an element  here in kernel of  and take  of that. In the definition of

, we are free to pick up  itself and then   and hence we are now forced to

pick up  in  and hence it follows that  is .



So, this completes the proof of exactness at kernel of . Similar is the proof of the exactness

at cokernel  . Okay? So, that is exactly similar again and left to you as an exercise, Some

practice. 

(Refer Slide Time: 35:43)

Now, there is one more thing I have to explain, namely, what is the meaning of the naturality

of this map? Okay, So look at this, this picture which I call the data, okay? I want to make a

category out of it. Every object of that category looks like this, where  etc -modules

morphisms are also in -mod. Okay? Let us name such an object, call it a `snake'. Take the

collection of all snakes in -mod. They form the objects of this category. So I am going to

define a category which I call snake. (You may denote it by ). 

What are the morphisms here? By now you know how to do all that. You take another picture

like this, as I have done here, take a morphism from each of the six terms in the first object to

the corresponding term in the second object, so that the whole lot of diagram is commutative.

That forms one single morphism in this category snake. 
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So,  here   form  the  first  object,  the  other  object  is  formed  by

.  From one  object  to  another  object,  a  morphism  will  be  set  of  six

morphisms  in  -mod like  this.  Okay,  ,  they together  make one  single

morphism in the category of snakes, provided the entire diagram is commutative. 

The  important  thing  is  that  all  these  squares,  these  squares,  these  squares  must  be

commutative.  Okay,  The  entire  box  here  okay,  there  are  two  boxes  here,  they  are  all

commutative. So, for any starting point to some end point if there are two different ways,

then the result of compositions along the two different ways must be the same. That is the

meaning  of  commutativity  of  the  entire  diagram.  So  check  it  yourself  that  this  forms  a

category. Okay?  

We now form another category for the codomain. This will be called the six-term-sequence

category. The objects are six term exact sequences in -mod and a morphism is a bunch of

six morphisms in -mod which form a ladder as shown in the picture. 

Now the claim is that assignment to each snake, the six term exact sequence given by the

snake lemma be comes a covariant functor. Given a morphism in the category of snakes, you

have a bunch of morphism in  -mod, they induce the corresponding morphisms of  -mod

which form a single morphism in the category Six-term-sequence.  



It is elementary module theory that and does not need any extra proof except wherever the

connecting morphism  is involved, viz., the commutativity of the central square out of the

five squares. 
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So  this  is  a  picture,  we  have  used  the  same  notation   to  denote  the  connecting

homomorphisms corresponding to two different snakes, which is indeed justifiable only after

the verification of the functoriality of this assignment.  

But the point is that in the definition of delta there is one choice involved and hence we need

to verify the functoriality carefully. In this situation, as observed above, we need to prove that

 from kernel of  to cokernel of . The hint is to use the freedom involved in

the choice of the definition of  on the RHS, viz, whatever you have picked up in  in the

definition of the first , take its image under  to be the element in . With this hit, we leave

the rest of the details to you to figure out.
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So, the student is advised to go through the definition of connecting homomorphism carefully

and  memorize  it.  Why?  Because  despite  the  so  much of  developments  in  theory,  while

dealing with the connecting homomorphisms, quoting all those theorems and lemmas may

not help in certain situations, often determining the image of a particular element under . I

have met with such a situation while doing my own research work Okay? So my I am telling

you that sometimes you have to actually see the definition of a certain thing while comparing

it with another formula, so better to know how this is defined. So it is better to get things

clarified completely at this stage. Okay? Thank you.


