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So, we begin  with a  new chapter,  homology groups.  This  is  one single chapter,  but  for  the

reasons of proper presentation in the slides, in this Beamer presentation, we will divide it into

two parts. First part is mostly algebra and definitions and basic property of singular homology. In

the second part we will compare singular homology with other homology theories, discuss some

assorted topics, applications and such things for homology. 

Like many other branches of modern mathematics,  homology and cohomology theories have

their  roots  in  analysis,  more  precisely,  in  complex  analysis  of  1-variable.  When you started

integration  theory  of  line  integrals  of  complex  valued  functions  defined  on  parameterized

piecewise differentiable curves, you realize that the integration does not really require continuity

of this function all over the curve. Just piecewise continuity is good enough, but differentiability

of the curve is necessary there. 



That idea of finitely many discontinuities gives rise to what are called later on, by the name

`chains'. Inside a certain domain in , if you look at all the chains, which share the property that

integration of any given complex analytic function takes the same value, those chains are defined

to be homologous to each other. That word `homologous' used over there, which is happening

inside a domain in  for holomorphic functions, gives rise to the general notion of homology. 

 

So, the topological aspect of the line integrals is brought out by this concept called homology.

The integration itself gives rise to cohomology theory. Indeed,  integration of the forms, first of

all integration of functions functions on curves as integrations of 1-forms, then intergration of 2-

forms on surfaces, aand then 3-forms on domains such as cubes in 3-dimensional spaces and so

on,  that  gave  rise  to  what  is  called  cohomology.  The  very  first  of  this  kind  is  De  Rham's

cohomology. 

Now, for us, we would like to do a more elaborate treatment of these things. So, it is better to

separate  out  cohomology  from  homology  in  the  beginning,  first  study  homology  and

cohomology  later.  So,  that's  what  we're  going  to  do.  Unfortunately,  because  of  the  time

constraint, we will never come to any serious study of cohomology in this course. So, you just

end up studying homology a bit more elaborately than what you might do elsewhere. 

(Refer Slide Time: 04:10)



So, as I told you, the homology and cohomology theories have their roots in complex analysis.

But it took, you know, several years and efforts of various people. Namely, Poincare was the one

who came up with a version of homology on spaces called piecewise linear spaces which are

slightly more general than simplicial complexes, okay? Spaces which are built-up from convex

polyhedrons.  That  was  the  beginning.  After  that,  it  took  several  years  to  truly  establish

homology  theory  as  we  know today,  the  way  we see  it  now.  So,  that  can  be  attributed  to

Eilenberg and Steenrod around 1952. 
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So, I repeat once again that we would like to keep the cohomology a little away right in the

beginning, though, they seem to be more natural in some sense and more structural. Homology,

you know, on the other hand is easier to understand. And as far as we are concerned that itself is

a full time job here. 
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So, we will begin with some unavoidable amount of algebra that is needed for us. It is definitely

unavoidable, whether you like it or not. That's why we have to do this thing. We will keep the

algebra to a minimum to begin with. And we will keep picking it up as and when we need more

and more algebra. Okay? So right now, what we would like to consider is the category of all

modules over any commutative ring. But that seems to be a bit too much of algebra, So,  we'll

just restrict ourselves to only rings which are called principal ideal domains (PID).  

If even that is a bit too much for you, all that you can do is that this principal ideal domain

whatever it is,  just think of this as the ring of integers. And then the modules over it are nothing

but  abelian  groups.  However,  I  will  do  the  treatment  for  PID's,  though I  will  keep  saying

modules over the ring , Okay? So you can just keep thinking about  being the ring of integers,

and then the module is nothing but an abelian group. Okay? That is good enough at the starting

point. Later on, we'll see whether we need more algebra. 
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So, the first thing is that we have a bunch of abelian groups or modules, this bunch has been

indexed by integers. And then we will take the direct sum of all these infinitely many abelian

groups. So,  denotes one single abelian group, indexed by an integer and then I will take the

direct sum and that I will denote either by  or  . Because both these notations are used in the

literature, it's better to get familiar with both of them okay? 

The -th group here will be called -th graded component. So, such a thing is called a gradation

of the group  You can take it to be a graded module okay. And elements of  are also called

homogeneous elements of degree  , and   can still  be thought of as just one single abelian

group, Okay?  More generally, it is a module over  and there are sub modules namely all these

's are sub modules of . And  is made up of these submodules in a very nice way namely, as

a direct sum. So, each submodule is some grades component. So, these are just terminologies

right now, they have some deeper meaning. Let us go ahead.  
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Next, I want to take a -module homomorphisms, between two such graded modules  and .

What is it? It is a  -linear map, but I insist on that they have some more properties. Namely,

each  is going into , for every , where  is a fixed integer. Then I would like to call such

a homomorphism a graded homomorphism of degree .  is carried inside , okay? So, this

will be a graded homomorphism of degree , Okay? 

Now, if you compose a degree  map with the degree  map, what you will get is a degree 

map, okay? If  you fix the degree  then it  will not  form a category, in general,  unless  .

Graded modules  with graded homomorphism of degree   have a  special  significance for  us,

namely, they form a category.  
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So, now, the next thing is we want to put some more structure on these graded modules. So, this

structure  comes from another morphism viz.,  ,  called the boundary operator.  This is  a  self

operator on , i.e., an -linear map from  to , but this time it is of graded degree minus 1.

And it has one extra property, namely,  composite  is the -homomorphism, okay? 

In particular, this means that for each  goes into the subgroup . Therefore for each

, the restriction of  over   itself is a -linear map, which we denote by . Then the extra

condition can be written as   composite   for each  . A grades module with such a

structure will be called a chain complex okay? 

So, usually, classically as well as presently, we write this as follows: 

                                                           

so that it looks like a chain. So, the name chain complex is stuck to it. It's nothing special about

this name chain.  Like the modules are nodes or vertices and the arrows are like edges. One edge

followed by another edge, starting and end points are -modules. So, it does look like a chain.

So, these are called chain complexes. 
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The endomorphism  is called a differential or the boundary operator on   So there are both

theses names okay?
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If  and  are two chain complexes then by a chain map  from  to , we mean a graded

module homomorphism  of degree , that much you have to admit, but one more condition is

there. Note that though I merely say   is a chain complex, what I mean is that it is the pair

.  This  is  just  like our  practice of  saying   is  a  topological  space,  without  explicitly

mentioning the topology. 



So, the extra condition is that  should respect the two boundary operators in the domain and the

codomain. This just means that for every  is equal to . You can just write it as

, a single equation, without writing any indexing. It makes sense and the correct

decomposition into equations with -th graded components can be recovered easily, if you just

note that  is graded map of degree  and  is a graded map degree . 
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The important thing here is that now we have a subcategory of the category of graded chain

complexes and graded morphisms, namely, the category of chain complexes and chain maps.

Chain complexes along with the degree -morphism forms a category, okay? All that I have to

say is that the usual composite of two morphisms is again a morphism in this sense, okay. So, we

denote this  category by   or  just   when the ring   is  understood.  We rarely use this

notation but this being such an important category, you can have a notation for it, that's all. 
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There is an obvious way to define several  operations on  , similar to operation for abelian

groups or for modules. Like you can take direct  sum of a family of chain complexes. Direct

product  also  or   and  so  on.  For  example,  take  a  family   of  chain

complexes. I am indexing then with a super-script  and  is the indexing set, each of them is a

chain complex. Then the direct sum  is defined by taking   equal to the graded module

with its -th graded component equal to the ordinary direct sum of modules  and  to be

the direct sum . 

For instance, let us just take two chain complexes,  and . The direct sum of these

two is the chain complex , where  and  for each . A generic

element here looks like an element  direct sum an element  okay, then  (direct sum

of  and ) is mapped to direct sum of the elements  with . Okay? So it is pretty

straightforward to verify that composite of  composite  is zero. Almost all algebraic operations

permissible with  modules can be imitated for chain complexes also.
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Now, for any sequence of -modules, you may or may not know this, concept called `exact'. So

consider a sequence,  to  to , at least three terms here. It is to be called exact at , if not

only  composite  is  , but, the kernel of  should be equal to image of . Then we call it as

exact at  . Okay? This word `exact;  is actually borrowed from calculus, where you consider

exact forms or exact differentials, or exact equations etc. Okay? 

Suppose now that we have a sequence of several terms, may or may not be a chain, but a have

sequence of several  terms of modules and homomorphism of modules.  Such a thing will  be

called an exact sequence if it is exact at each of its terms  . Okay? All exact sequences are

chain complexes.
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A chain complex may not be an exact sequence, it may just fall short of that? The  composites of

consecutive arrows are all zero, implies that the image of the previous arrow is contained in the

kernel  of  the next  arrow.  If  that  is  an equality  everywhere then it  would become exact.  So,

exactness is much more stronger than being a chain complex. 

(Refer Slide Time: 20:38)

Now we can talk about these terms in the category   as well.  Infact,  I  may be really just

recalling them. You may be familiar with them already,  Take a sequence of -modules like this.

There are 5 terms here, the starting and ending terms are  . So, essentially there are only three

terms, okay? If this sequence is exact then it is called a short exact sequence, Okay. There are

obviously even shorter sequences which are exact  exist but they are of lesser importance.  In



practice, we mention on the three middle terms and morphisms the two end modules are assumed

to be zero.   

But usually the name for short exact sequence exists frequency is this 5 term sequence which the

endpoints or end modules are   okay. Suppose you say (14) is an exact sequence. That means

kernel of   is equal to image of ,  is injective and  is surjective.

It is called split exact sequence, if you have a morphism  from  to  called a splitting of 

that means, if  is the identity of . (So,  is a left inverse of , or equivalently  is a right

inverse of .)

I'm just recalling these thing if you already happen to know them. Otherwise, you will have to

work out a little bit, these things are not very difficult. The split exactness is equivalent to say

there is a morphism  from  to  such that . 

The third thing is that you can write   as a direct sum of a copy  and a copy of , viz.,

. So,  and  are submodules of , they span the entire  and they

will have intersection . So, that is the meaning of direct sum.  can be written as a direct sum

of these  submodules. That is pretty easy to see okay?
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Conversely, you can start with a direct sum  and  , take the inclusion here and take the

quotient  map  there  that  will  give  a  short  exact  sequence,  which  is  obviously  a  split  exact

sequence. So, we realize that giving a short exact sequence is not the same as giving a direct

sum.  Because  direct  sum requires  one  more  extra  condition,  either  the  existence  of  or  the

existence of   as in the last condition, which are equivalent.  The direct  sum of two modules

always gives you a certain short exact sequence but not conversely. Okay? 

(Refer Slide Time: 24:18)

Now,  we  want  to  imitate  that  with  chain  complexes.  Now  suppose  we  have  a  short  exact

sequence of chain complexes,  and  are morphisms of degree , okay? Unless stated otherwise,

chain maps will always of degree , okay because that is the one that forms a category. So, take 

to   to   to   to  ,  a short  exact  sequence,  which is equivalent  to say that for each the

corresponding five term sequence of modules is a short exact sequence. Similarly call it a split

exact sequence, if for each , the corresponding five term sequence of modules is split exact.  

So, this is slightly an unconventional definition, but this is the definition I would like emphasis.

You are having a category of modules and you would like to have a splitting which is also

categorical.  No,  but  this  word  splitting  is  not  categorical.  First,  we  are  talking  about  the

exactness of the sequence which is the same thing whether you consider it in the category 

directly or separately for each  in the category of modules. 



However, while talik about spliting, you demand that for each  , from   to   you have a

morphism which is  a  left  inverse,  these  morphisms  collectively may not  commute with the

boundary operator and hence may not form a spliting of the chain complexes. So, that is the

difference. So, definition of splitting is weaker here because what happens is in practice, that is

what you get and that itself is useful to some a great extent. 
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So, there is a subcategory of short exact sequences of chain complexes of  modules of category

of all chain complexes. This is a full subcategory. Okay? Obviously,  these will be used to split

up the study of longer chain complexes. Suppose you have a chain complex, a very long one, you

can always break it up into a number of shorter sequences and then study each of them. Later,

we'll study to do that. Okay, At this stage, I just want to say why these short exact sequences are

considered.  Okay?  There  are  like  stop-gap  steps,  like  inductive  steps,  concentrating  at  one

module at a time. Okay? Since you can't take isolated single module there, you have to take the

previous one and the following also. So that is the that's the minimum to take, that is the best

thing you can do. So one by one, we will study a lot short exact sequences and that will give you

information on original chain complex.  So that's the idea. Okay. 

Now I want to introduce maybe I should stop here, it is Ɵme for today. We will take this one next Ɵme. 
Okay, thank you. 


