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During the last meeting we studied categories and functors. Today we shall demonstrate how

certain classical constructions in mathematics can be put in categorical language beneficially.

Take any category . An object in this category is called an initial object if it admits exactly

one morphism into every other object in .  is an object such that   is a singleton

every  . Such an object   is called an initial object. Exactly dual to this concept, if  

admits exactly one morphism from every member  into itself then you call to be a terminal

object, just same thing as saying  is a singleton for every . If  happens to be

both initial object and a terminal object, it is possible of course, then  is called a zero-object.

So, this terminology is again copied from properties of abelian groups, rings, fields, vector

spaces and so on. So, we will see why these three terminologies help us.
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In the category of all sets, the empty set is an initial object but it is not a terminal object.

Also, every singleton set in Ens is a terminal object but not an initial object. Categories such

as  Gr, Ab,   etc.,  they all have   objects.  The trivial group   will  have exactly one

homomorphism  from  it  to  any  other  group.  Similarly,  there  will  be  exactly  one

homomorphism from any group into the trivial group. Though it may be noted that in a non

abelian group when multiplicative notation is used for the binary operation the trivial group is

often denoted by  rather than .  
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There is  a simple way to turn an initial  object  into a  terminal object,  by considering the

opposite category of the given category  .  An initial object in the category   becomes a

terminal object in  and vice versa. So, you see Ens had the emptyset as an initial object

but not a terminal object. But if we take opposite category of Ens, it will become a terminal



object but not an initial object. It is easy to produce a categories which may or may not have

any initial object or may have many of them also.
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In any category, it is easy to see that any two initial objects are equivalent within the same

category. This is a simple observation which helps to understand many part of mathematics

very easily. Likewise a terminal object if it exists is unique in the sense of equivalence within

that category. Now existence of   objects in a category implies some extra structure. Fix a

zero object   in a category . For every pair   of objects, there is a special morphism

, which is the composite of the unique morphisms  to  to . Since we have fixed the

zero element, there is a unique morphism in   and a unique in  . Take the

composite. That will be denoted by the  and call it a zero-morphism. These -morphisms

have an additional property: for any morphism  from  to   and  from  to   in  , we

have, . Similarly, . Note that there are several -morphisms.

Composing with a -morphism on either side yields again a -morphism.  

So, this property conforms with our experience with the zero homorphisms of abelian groups,

of rings, vector spaces and so on. So, we will come back to the initial object and terminal

object later. But right now, I will give you a construction, because that is what my aim was in

this lecture.
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So consider pullbacks. We had introduced this one in part I, in a very special circumstance

namely, when we were studying covering spaces or  covering and so on. You have a map

from any space   into the bottom space of a covering projection, the base space, then the

covering can be pulled-back on to the space . We would like to do the same kind of thing in

any category. We may not know the existence and so on, but at least, we will know that such

a concept makes sense.

So, take any category  and fix a morphism  from  to  and a morphism  from  to  in

it. So, both the maps have their codomain , in this picture. Once you have fixed this, you

will  define another  category itself. In that  new category which I am denoting by  ,

which clearly is going to depends upon the category  where you are working as well as the

morphisms  you have chosen. 

So this  is  going to  be  a  category  I  define now. Its  objects  are  all  possible  commutative

squares like this, namely,   and  are all in  , the only condition being  is equal to

. Such a diagram will be an object of . 

Next  I  will  define  the  morphisms  and  the  composition.  Various  properties  such  as

associativity  etc.,  will  be  automatic  because  they  will  depend  upon  the  corresponding

properties in  being a category. So, what is a morphism from one such object to another such

object?  We may simply denote these two objects by triples 
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A  morphism  from   to   will  consist  of  a  single  morphism   in

, such that the entire diagram is commutative, namely  followed by  is  and

 followed by  is .

The rest of the commutativity will be automatic. Such a morphism in  will be a morphism in

.  If  we have  another  object   and a morphism   in   which

qualifies to be called a morphism in  , then the composite   in   will

qualify to be a morphism in . That completes the construction of the category . 
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Now, a terminal object in this category will be called a pullback of  under . Recall that a

terminal  object  means  that  it  is  some object  with  the  property  that  there  is  exactly  one

morphism from every other object into this object. In this picture here, if  is unique for every



object   in  , then  will be called the total space of this pullback, this  

will be called the pull back of  under . 

The notation for this will be . Also, the total space  will be denoted by . By this we

mean that the codomain of the morphism  is   and its domain is denoted by  . The

uniqueness of the pullback upto certain equivalence is obvious, being a terminal object in

. 

So in part I, we gave a constructive proof of the fact that in the category Top, namely, the

category of topological spaces, pullbacks always exist. The same construction you can try in

various other small categories. But they may fail to give you the full satisfactory answer. The

same construction may not be a terminology object.  That  part  we have to re-examine in

category separately. But quite often it may work. 

So now you see, because of this terminology, I have reduced the work of defining pullbacks

what I did for the covering spaces becomes a prototype for so many other categories. You

construct this category  in this way and look for a terminal object in that category. One

single definition works for all if at all pull-backs exist.  So, this is the beauty of categorical

language.
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So for example, recall that a category is called a small category if it is objects are sets, each

object is a set. Like Ens is a small category. Top is a small category. Many others like rings,



groups, they are all small categories, because the objects in them can be thought of as sets

viz., the underlying set. So, you can say that they are all, in some sense, subcategories of Ens.

But that is not necessary. A small category need not be a subcategory of Ens always. Just the

objects are sets, that is enough. Fix a small category  and let  be any set. Now I am going

to define another category . Its objects are pairs ) (you understand,  is a category

and I pick up any set  and then I am taking pairs ), where  is an object in  and  is a

subset of . 

For example, suppose  is the category Top.  is an object in it means that  is a topological

space. But I can talk about subsets of  and  is just a subset of . Or  may be Gr and then

 will be a group but I can talk about just a subset of that group , so this  must be just a

subset of , and not necessarily a subgroup. So, take such pairs  where  is an object

in  and  is a subset of . They are the objects of this .

Now, I am going to define morphisms. Morphisms are again commutative diagrams as shown

in this picture, namely, I have inclusion maps  to  . Also I have a morphism 

from  to  in . However, composition  with the inclusion map of  to  has to make

sense and must be the inclusion map  to  . This makes sense only if we put some extra

assumption such as that  is a set theoretic function. Such as assumption is missing from the

slide).

So along with that curcly is a small category let us also assume that  is a subset of

, and the binary operation in  is the composition of functions. You have to put

such a hypothesis explicitly. So, this diagram makes sense and it must be commutative. Such

diagrams will be called morphisms of this category  Objects are like including maps.
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An initial object if it exists is unique upto an equivalence. (I do not know whether it exists).

Such as initial object is called, a free object in , with  as a basis. That is a definition. Let us

look at the examples which I have been telling often. Namely,  Gr, Ab,  ,  -mod etc.

they  are  all  small  categories  in  which  the  extra  condition  that  morphisms  are  also  set

functions and the binary operation is the composition of functions.

What is free object in each case? A free group, a free abelian group, vector space with  as a

base or a free module over  with  as a basis etc. All these 4 different things you may have

studied very thoroughly at different places. All of them and more can be studied in one single

go by this concept of an initial object. They are free objects in the specific category. So, if

you prove a theorem for free objects, it will be true for all of them. 

Even the proof of the existence which is constructive will be similar if not exactly the same.

So, you may have to keep modifying it a little bit. For the existence part, you will have to use

some special properties of the particular category that you are working in and that cannot be

generalised.
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So, pullbacks etc,  are new but these free objects were somewhat  old.  I  will ask you one

simple question. If you take  as Top, what is the free object there. Think about it. The direct

limit and inverse limit are the next topics that I want to discuss.
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So,  go  back  to  this  example  wherein,  we  started  with  a  partially  ordered  set  and  then

converted  it  into  a  category.  That  conversion  was  recoverable.  Namely,  the  category

associated to a partially order set has objects which are points of the set and morphisms are

precisely singletons only if . If  and  are incomparable, or if , then  will

be empty. So, that was the category that associated to its poset. So, we will use that now. We

have seen how to view a poset as a small category.
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A directed set  is a poset such that for every two elements  and  in , there is a 

such  that   and  .  The  elements   and   may  not  be  comparable.  If  they  are

comparable,  then I do not need another   to satisfy that above condition, one of them is

bigger than or equal to both of them.

But if they are not comparable, then of course the above condition is an extra assumption on

the directed set. It is not always true for an arbitrary poset. Given any two elements there is

an  element  which is  bigger  than  both of  them. So,  that  is  the  meaning a  directed  set,  a

partially ordered set with this extra condition. It is not difficult to reformulate this in terms of

the corresponding category.

All that it means is that given  and  inside , there is  such that  and 

are non empty. That's all. You can talk about the same thing in slightly different language

category.  Now, given a directed system   and a category  ,  I  am going to define a

directed system in . It is just as a covariant functor  from this category  to , where

 is viewed as the associated category. 

So,  a  directed  system is  nothing  but  a  covariant  functor  from a  directed.  What  does  it

constitute? For each element , you have an object  and for each , there will

be a morphism  from  to  in . Then because it is a directed set, given  and , there

will be some  such that there is a morphism  and a morphism . So, that is the picture

of a directed system.
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Associated to a given directed system, we shall define a category  now. Just like while

defining free objects, or while defining the pull back after fixing two maps  and  and so on.

That  kind  of  game we playing  again.Whatever  you  want  to  do,  you  first  make up your

category  appropriately.  Look at  the data to begin with and then out of  that  you have  to

construct a correct category and then look for initial or terminal object in it accordingly. So,

now what I am going to do? I am going to define another category which depends upon this

directed system. And every thing is happening inside the given category .

Objects of  are pairs , where  is an object in  and  is a family of

morphisms in   from   to  , indexed over  , such that  , whenever it makes

sense, i.e., whenever . So, we can represent this by a diagram as shown here. For each

pair , whenever , you have such a commutative diagram of morphisms in .  
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So, these are objects of your category. So, what are morphisms? Again from one pair to

another pair? Suppose you have another object   here. So, there must be a

morphism in the category , let us say  from  to  which fits all these diagrams, that means

for all , we must have these commutative diagram shown on the right here, viz., the same tau

should satisfy  for all . That completes the description of the category .

(Refer Slide Time: 29:31)

By a direct limit of the directed system , we mean an initial object in this category .

Note that in general, category   may be even empty. Why? you see an object in  

means a lot of data you have. The category  must have morphisms like this, for each  some

 from  to , with a specific properties. If not there would not be any objects in . So,

there is lots of conditions here. This category   itself may be empty. Then there is no

question of having an initial object.  Even if it  is non empty, there may not be any initial

object. If it exists, of course, upto a strong equivalence, it will be unique. So, a direct limit 

means an initial object in this category , we note that in general, the categories here may

be empty.

If  has terminal objects, suppose I take a terminal object , then automatically all these

morphisms will be there and they will be commutative also, because terminal object has this

property  as a  unique  map here  the composite  has  to  be there.  So  the composite  will  be

automatically will be there. So,  is non empty. However, there is still no guarantee that

the direct limit will  exist. Of course, an initial object  exists, we have seen that it  will be

unique. So we can have some notation for it viz., direct limit of ’s.
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Thus the direct limit of a directed system in  is an object  in  together with the collection

of morphisms  from  to  (because after all it is an object in this  the new category

that I have defined) satisfying compatibility condition, this condition and then it must satisfy

this other thing condition also viz., for every other compatible family  from  to , there is

a unique morphism  from  to  making these commutative diagrams. 

So, this is the way a directed limit is defined every time whether it is a direct system of

groups, direct system of topological spaces, direct system rings, direct system of algebra and

also. So, we can be talked all of them in one single go using this language. 
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So again, come back to the category of sets itself. It turns out that that every directed system

has a direct limit. That may be due to the fact that there are lots of terminal objects viz. every



singleton is a terminal object. This fact may have some impact on the existence question of

the direct system. I am not saying that this is the proof of the existence okay? 

So, what how do you do that, take   to be the quotient of the disjoint union of  's by an

equivalence  relation.  Now   are  just  sets,  the  disjoint  union is  also  a  set.  Introduce  an

equivalence  relation:   equivalent  to   for  all   for  all  .  Let   be the quotient

function the set  of equivalence classes. Given any object  in the category Ens( ),

the identity function on the disjoint union will factor out to give a function  from  to ,

which will automatically fit the bill.

Same kind of construction will work in the categories Gr, Ab,  etc., When I say same it

is not meant to be exactly same because you have to worry about group operations, vector

space operations and so on. But similar construction works, in many other categories, called

abelian  categories.  There  are  various  concepts  which  generalise  many  many  algebraic

objects, topological, analytic, computer scientific, and all such together. So, that is the whole

idea of of category theory perhaps. We are coming to a close now, we will start talking about

other things now.
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So, let me just give you one more example. One example in the category  Top. The direct

limit construction works in Top also. What I will do? Take the disjoint union just like we did

in Ens, and do the identification also. But what is the topology? On the disjoint union, take

the disjoint union topology and on the quotient set you take the quotient topology. Thus direct

limit is a very special case of coinduced topology.



So, many of these topological things that you have studied could have been worked out with

general  category  theory.  On  the  other  hand,  the  topological  ideas  themselves  will  be

generalised all these categories what are called as topas. So, there are so, many other things to

do within the category theory. In the beginning they closely resemble algebra. But later on,

they become topological. In modern algebraic geometry, all these things are a must. They

have to study all these things.
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So, for a directed system there is one small technical thing. We remark that this has nothing

to do with the category theory.  So, it is better to know that since I am talking about the

system. Suppose you have a poset  and a sub poset . So,  is a partially ordered set and

this  is a subset of  with the induced relation. We say this  is final in ,  is a final family

in , if for each  there is a  which is bigger than .

For example, if you take natural numbers for  and  take to be only the odd numbers, this 

will be a final in  , because given any natural number there is an odd number bigger than

that. This is similar to the concept of a subsequence of a Cauchy sequence. Indeed it  is a

generalization. You do not need to go to category theory for it.  This is done even in the

classical set-up.

(Refer Slide Time: 39:03)



So, what happens is that suppose you have a directed system  and then you consider the

subsystem . If one of the direct limit exists, then both of them will exist and they will be

equal. So, this as I said it is similar to the subsequence. Now, for a subsequence, the limit

may exist but for the given sequence limit may not exist, in general. So, there is a problem

there. But with direct limits, that will not be a problem.

So, directed systems are already like Cauchy sequences, not just general sequences. That is

why this works, you can verify this one. This is just a remark. You need to prove. Assuming

 is the direct limit for the subsystem, we take   from  to   as follows.

Pick any  such that  and take . Verification of the details is left to you

as an exercise. 

The entire discussion about directed system is valid for contravariant functor also instead of a

covariant. Then the name will be an inverse system. Instead of initial object, you take the

terminal object, that will be called the inverse limit. So that is easy exercise for you to think

about it. So, after that I have a number of exercises here you can keep trying them, some of

them will be discussed in in assignments and so on. So, our next topic will be homology

theory. That will be for another five weeks. Thank you. 


