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So,  let  me  begin  with  the  last  remark  that  we  did  last  time  namely,  given  a  surjective

homomorphism from one group  to another group , the first isomorphism theorem says

that  the  quotient  group   is  canonically  isomorphic  to  .  Likewise  given  a  finite

dimensional vector space , you are told that its doubled dual  is canonically isomorphic

to .

Perhaps you were not told the true meaning of the adverb `canonically', what is the meaning

of the term `canonically' in these situations. So, I would like to explain this to some extent

whatever possible, nobody can explain fully after all, using the category theory. Before that I

have to introduce another  important  notion in  the category theory,  namely,  the notion of

natural  transformations and natural  equivalences.  The  word `natural'  is  there  or  you may

replace by the word `canonical'. So, that is what it comes to now. So that is the topic today.

And later on, we will even generalise this concept of natural transformation itself. 
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So let   and   be any two functors from the same a category   to  . There is a way of

defining this concept when both these functors are contravariant, but I am taking, to begin

with,   and   to be covariant  functors.  Exact similar definition is valid for contravariant

functors also. 

So, by a natural transformation from   to  , where   and   are functors from the same

category   to the same category , this  is also indicated by a twisted arrow like this, we

mean a whole set of data as follows: What are they? That is what I am going to define. The

entire thing below is one single definition:

(i)  for  each  object   of  ,  there  is  a  morphism   in  the  category  ,  i.e.,   is  in

. Remember  is an object in  and  and  are objects inside .

Therefore,   of that pair makes sense. So for each  , I am having a morphism in this

category. 
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(ii) And this association is such that if  is a morphism in  itself, say from  to , then you

must have the following commutative diagram of four morphisms in , namely you have 

gives rise to  from  to  and  gives rise to  form  to , the morphism

 gives rise to   and  , these are related by this commutative diagram. Remember,

 and , by the very definition, are morphisms from  to  in the category .

 and   are  also  in  the  category  .  So,  this  entire  diagram of  is  in  the  category  .

Commutative means  must be equal to .

That completes the definition a natural transformation of covariant functors. If you reverse all

the arrows in the above diagram, you will get the definition for the case when  and  are

contravariant functors. So, this is the meaning of `naturality', 

You have to have one more definition, namely, suppose further that each  is an equivalence

in  ,  and  not  just  a  morphism,  i.e.,  if   is  invertible,  then  we say  that   is  a  natural

equivalence of these two functors. When such equivalence exists then  and  are said to be

naturally  equivalent,  or  naturally  isomorphic.  Sometimes  when  you  are  doing  category

theory,  you do not  want  to  keep  saying `naturally'  or  `canonically'.  Just  saying that  two

functors are equivalent or isomorphism is enough.

So,  once  you  are  in  category  theory,  just  the  isomorphism  always  means  natural

isomorphisms,  that there will be commutative diagrams like this of isomorphisms.
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So, here  is  a  quotation.  I  do not  know where  I  read  it.  Definitely,  it  is  not  mine,  but  a

quotation. I mean I do not remember from where got it. Since I keep repeating it often, for

my colleagues/students etc, it has become my statement now. (Read it from the slide.) 
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Now, here is the second example, I wanted to explain, which is easier among the two of

them. It  is  about vector spaces  that  you learn in linear  algebra.  So, there is  not much to

explain here. So, let us consider the category , where  is a field. We have defined this

with the family of all vector spaces over  as objects and -linear maps as morphisms. Given

a vector space, define  as the dual space of linear map from  to . This is just a notation. I

hope this is standard notation. The assignment  to  itself a contravariant functor. It is not

just an assignment it is a contravariant functor from  to itself. For example, you also

know that given a linear map  from  to , what is the corresponding associated linear map



 from  to , so that the association  to  and  to  defines the contravariant functor

.

So,   will be  ,   will become  , the arrow will be the other way around and that is

some   which must  be linear  map.  We have to tell  what is  this  ? It  should have the

property that  is  and  must be identity of the corresponding stars.

These properties must be there. So, first of all I am going to define what is .  is nothing

but pre-compositor,   of  . Now, let us put  , both categories are

, capital  to be the identity functor and  to be the double dual functor. What is that?

You are composing  with itself  is contravariant functor and therefore  will be a covariant

functor. 
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So,  leads  a double star is a contravariant functor from the category  to

itself.  Now,  define  a  natural  transformation.  First  I  want  to  say  there  is  a  natural

transformation  from the  identity  functor  to  this  double  star.  Namely,   from   to   as

follows.

Gien a vector space   over  , we have to define a linear map  from  to  . Because,

 and . That means for each vector  must be a linear map

from  to . So, we take  operating on a linear map  from  to  to be equal to . I

am sure that you have seen these things before. 



So, we can verify the linearity part etc. very easily.  is in capital  is in  and  is the

space of all linear maps from  to  . Similary, it follows that   from  to   has the

property that .  is nothing but  in our notation . Just verify this. So,

double star being  repeated twice.
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So, it is straightforward to verify that the following diagram is commutative:  to  here,

 to , we have  which is nothing but . And vertical arrows are  and 

respectively. You are verify that the diagram is commutative, in the definition, remember this

one.  So,  this   is  identity  here  and   is  .  We have to be verify  that  this  is

commutative. That is straight forward. For each   we have to see that   is

equal to  operating on . So, take any  and verify that the two sides operating

on  produce the same of . 
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So, this is true in the category of all vector spaces. So, far I have not assumed anything about

finite dimensionality. Now, I come to finite dimensions. So, there is a subcategory  

consisting of of finite dimensional vector spaces which is a full subcategory of  . Full

means what? All morphisms in   are allowed, in this smaller category also. Only the

domains and codomains are finite dimensional.

If   is of finite dimension, then we know that  and hence  is also finite dimensional.

So, the two functors star and double star namely  , are from  to  , from the

subcategory to subcategory,  they become functors.  Further,  elementary linear  algebra,  we

know that  is an isomorphism whenever  is finite dimensional. So, this is a linear algebra

that you have learnt.

I am not going to prove that.  I  am going to explain the word `canonical'  attached to this

isomorphism you know. So, what you might not have bothered about is that such a diagram is

commutative.  No  matter  what  vector  spaces  and  what  linear  maps  you  take.  The

corresponding  diagrams  are  commutative.  You  do  not  have  to  worry  about  these

transformations, these isomorphisms the same isomorphism will work for all   and  .

That is the beauty of this statement. So, we know that   is an isomorphism whenever  

finite dimensional. Therefore  is an equivalence of the two functors, identity functor and the

double dual functor. It is not just for one vector space that you have got an isomorphism. For

all vector spaces together, in a such a compatible way, that is the meaning of the canonical

isomorphism. 



So,  this  was  just  a  technical  or  just  a  verbose  explanation  of  technically  very  precise

statement, namely, there is a natural transformation which is an equivalence. So, category

theory has achieved that.
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So, our next example is the word canonical occuring in the first isomorphism theorem in

group theory.  This  example  is  slightly  subtler,  more  difficult  than the  vector  space  case

wherein  the  necessary  stuffs  were  ready  buitl-in  for  us.  Here I  have  to  do some  circus.

Nevertheless, I appreciate this great thing. It must be due to Emmy Noether. These are so

called Noether isomorphism theorems right? But, the first isomorphism theorem perhaps is

not named after.
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Consider  the  category   whose  objects  are  surjective  homomorphisms  from   to   of

groups. What are the objects? They are not groups. I am making up another category whose



objects  are  surjective  morphisms from one group to  another.  These are  the objects.  You

understand, how can you make it a category? I am going to do that. I am going to do several

constructions here you will see and this is only beginning.  

So objects of  are epimorphisms. You may denote them by the triples such as . So

what are morphisms from  to ? It is a pair  of homomorphisms

such that the following diagram is commutative. All of them are group homomorphisms the

top thing is one single object. The bottom thing is another single object, a morphism is a pair

of homomorphisms not arbitrarily, but such that the diagram is commutative. This kind of is

going to occur several times here. We will see that commutative diagrams are the essence of

the whole thing.

Note that because we have a commutativity diagram, if you take  of the kernel of  will be

contained in the kernel of . What is the kernel of , all those  which go to identity in

. Therefore,  of  of  which is equal to  of  of  is the identity element of  This just

means  is in the kernel of .  

So, this next statement is also a theorem that you have studied in group theory: So, for each

pair   as above, there is homomorphism   from quotient to the quotient.  This   will

depend upon both   as such, remember that, but we are not using such an elaborate

notation. Usually people just write  because it is given from  to .
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On the category  that we started with, we have two functors into Gr now. What is the first

one? I am writing it as  and the second one I am writing it as , defined as follows: For

 is  equal  to  .  This  makes sense.  And  

must be a homomorphism from  to . So take it to be equal to . Define  of  equal

to is the image of f  which is nothing but . And .

Note that in the definition of , there is no mention of  and in the definition of  there is no

mention of . Easy to check that both are covariant functors. The first isomorphism theorem

tells you that there is an isomorphism ,  which depends on  of course,  from  to

.  The  canonicalness  corresponds  to  the  assertion  that  the  following  diagrams  are

commutative. 
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 to , we have the isomorphism . Similarly,  to , we have the

isomorphism , making this diagram commutative. Now, look at the first vertical arrow the

functor  and the second one is the functor . And  is a natural transformation from one to

another  which  is  an  equivalence.  I  hope  this  explains  the  word  `canonical'  used  in  the

ordinary group theory theorem, that you have studied.
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Let me now introduce one of the first deep results in category theory. So far, whatever we

have done were all easy.  This is the first deep step you are taking in category theory. We are

not going to do anything further. Just a little bit of this one, and then we stop there. Later on,

we will do something else. 

I would say that adjointness is the starting point of serious category theory. So, let us just

make a small beginning here. And then interested reader can pick up more from elsewhere,

form source such as I have given you the reference of that book. That is a good book you can

read from. Of course there are many other books also.
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So, join us once again, I am going to define two things simultaneously, left adjointness and

right  adjointness.  So,  you  can  have  a  very  vague  picture  of  it  by  starting  with  a

homomorphism and then a left inverse and a right inverse for it. It is similar to that. Having



said  that,  the  similarity  ends  there.  This  is  much  more  subtle  and  much  more  stronger

statement than that. So, let  from  to ,  from  to  be two functors. (Now, once again, I

am taking only the case of covariant functors here. For contravariant functors there is exactly

the same kind of definition and same kind of result, got by simply reversing the arrows. So, I

am not going to do that. So, here they are both covariant functors.)

We say   is a left adjoint to   and (at the same time)   is right adjoint to  (just like for

functions, when  is left inverse to , then  is the right inverse to ,  left adjoint to  will

imply and implies by  is a right adjoint to ) if there is a natural equivalence of the these

two functors.

Both are actually bi-functors from the product category   (which I have not explicitly

defined so far) to  Ens. Note that both functors have two slots, to be filled up with objects

from  and  respectively. Actual definition of this product category etc is time consuming

and not necessary to understand what is going on, except when I have to do all this rigorously

and systematically.)

So,  what  is  .  Starting  with  an  ordered  pair   of  objects  in   and  

respectively, since  is an object in ,  makes sense as

an object  in  Ens.  Similarly,   also makes sense.  So, this   must  be a

bijection from the first set to the second.

Now, when I say natural transformation, automatically, there are many other things built in

here. See, first of all, a bijection for every  and  will be ready that itself a lot of data, but it

is when I say it is a natural isomorphism, what does it mean? Let me recall the definition.
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That just means that for every pair , with  in  and  in ,  is an isomorphism

which depends on both  and ,  from  to . Note that

 occurs on the left slot and  occurs on the right. That is the way to remember.  

You could have   itself  in the other direction here,  no problem. Indeed that  would be  

inverse no problem. I have not yet finished the description yet. These are isomorphisms such

that whenever you have a morphism  from  to  in , and a morphism  from  to  in

, you must have a commutative diagram as shown. Once we have,  from  to  here and

 from   to  ,  there   is  a  double functor  which assign   to

. Similarly the other functor  is defined. (There is a typo here in

the slide.)  

So, this entire diagram must commute. The most difficult thing to obtain here is this natural

transformation like this. It has so much of data built in this one. So, unravelling the definition

is of the major difficulty in understanding this. You have to practice it at this level itself.

Then you will see that you have been given so much of data in one single statement. 
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So, I have put it here some remarks. We shall leave it to the reader to verify that any two left

adjoint functors of   are naturally equivalent. This is not a very difficult exercise. But the

difficulty is that you may not be knowing what to do with this kind of statement. You may do

very  well  in  computing  even  very  difficult  ones.  You  are  familiar  with  that  kind  of

mathematics where you have to show left hand side equal to right hand side. This kind of

kind of mathematics is new to you. That may be one of the reasons why you have difficulty

with it. 

Secondly, even if I explain all this, it will remain almost as difficult as it was. But maybe

slightly less that is all, because you have not spent much time on this one. And that is the

reason,  I  am  leaving  it  as  exercise.  Find  out  yourself,  unravel  these  hypotheses  and

definitions, take some simpler special cases, and see what it gives. If in early attempts you

cannot get something, come back again and read again,  maybe after some time.
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I can give a number of exercises to you later on as assignment to you and so on. Right now,

this is a remark which not even a well-defined exercise. But I am imploring you to try to

work out this one. That two left adjoints for the same functor will be naturally equivalent to

each other. Same for right adjoints. Try to prove that. First you must think clearly what is to

be done. Then it will be easier. Easier for me to explain as well.
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Right now, let us give two examples of these functors and then stop. Examples of adjoints.

The first one is the functor  from sets to abelian groups, Ens to Ab, that assigns to each set

, the free abelian group  over . So what is the definition? (Note the notation  is

used usually for free groups, but I am taking free abelian group here. So, please ignore the

notation in the slide). I am assigning for each set  , the free abelian group over it. Now a

adjoint  from Ab from Ens is got by just taking the forgetful functor, namely, take a group

and forget its group structure and look at underlying set. That is a forgetful functor. So I want



to say that  is a right adjoint to . That is all. Similarly, you can consider the functor which

assigns free group and think of a right adjoint to it. 

The  second  one  is  a  little  subtler,  that  is  all.  But  here  you  have  to  know a  little  more

commutative algebra of tensor products and so on. Let  be a commutative ring and  be an

algebra over . (Like a polynomial algebra with integer coefficients or a tensor algebra and

so on, it is like vector space with a compatible, commutaitve multiplicative structure also).

Let -mod (respectively, -mod) denote the category of modules over  (respectively, over

). Consider the forgetful functor  from -mod to -mod which assigns to each -module

the underlying -module.  left adjoint to this is the functor  goes to . 

Similarly, a right adjoint to  is the functor  goes to .  is an algebra so  is

also a ring. So, you can take the modules over that, that is the category -mod. You can think

of  as an -module so  makes sense.  

So, a typical example is:  =complex numbers form an algebra over the  =reals. You can

take a complex vector space and treat is a real vector space. That will give you a forgetful

functor. So, this is just an example but not exactly the same. Here -mod to -mod, we have

forgetful functor that associates to each  -module, the underlying  -module, because   is

somewhat a larger ring than . Since scalar multiplication by elements of  make sense and

so scalar multiplication by elements of  also makes sense. That is the meaning of this and

that is all. So, that is one functor. Then you consider the functor  going to  over . 

Now, here  is thought of as a module over , as a left-module and  is taken to be a right

module.  This  is  possible because   and   are commutative.   becomes a right  -

module. It is a left adjoint this functor  . And the functor   going to   going

means what? All -homomorphisms from  to . This is a right adjoint to .  

But there are two of them here. Of course, the tensor product itself is left adjoint to . So, 

itself is a right adjoint. But of couerse a right adjoint to S will be something else. So, for this

examples, you will need to understand meaning of tensor product, algebra and so on. So, it is

only for those people who know enough algebra. But the first about abelian groups all of you

must be able to verify the details. 



Next time we will define we will study some general topics of what are called as universal

constructions. Such as the construction of free abelian groups. We shall do that kind of things

in a categorical language. Thank you. 


