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Having introduced  categories  and lots  of examples now we want to study relations  between

them.  One  simple  relation  we  have  already  introduce,  namely,  subcategory.  When  is  one

category a subcategory of the other? It is just like the inclusion maps between sets. But then we

want  to  have  more  maps.  So,  now let  us  have  little  more  generalization  of  this  concept  of

subcategory,  okay? That leads us to functors.
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So,  and  be any two categories. There are two types of functors, one called covariant another

one called contravariant, okay? Classically, this are the names used. There is no way to change

them, though many people have objections for these names, It does not matter but the names

stand. So, the people who object for these names, they want to say that this `contravariant' should

be called simply  `variant' and other one is covariant and there is no need to bringing `contra'.  it

is the variant that is more fundamental concept. This argument is similar to the practice where

we have algebra to co-algebra, or finite tocofinite, dimension and co-dimension etc., where the

prefix  `co-'  indicates  a  definite  meaning.  So,  the  contravariance  should  actually  be  called

`variance' and the covariance is then co- of the variance. 

However, what actually happened hystorically is that the covariance was studied in beginning

and then there attention went to this other concept which is dual to covariance. Obviously they

would like to call it co-covariance and hence the name contravaince was introduced and it has

stuck. This is just an unfortunate historical background, okay?

So,  let  us  see  what  is  the difference  between  these  two concepts.  First  let  us  look at  the a

definition of a covariant functor.

A functor  to  is just like a function one set another or morphism form one object to another.

But we will not write just an ordinary arrow, a simple arrow which used to denote a morphism.



morphism like a function that will not be indicated. So, we have to have some other notation. So

a twisted arrow is used, okay? That will be the notation for a functor  from  to . By this, we

mean

i) an association denoted by  itself again, okay?

(several times, you will have to use this notation)  is an association from objects of  to objects

of . Both  and  are some classes or some families, and so  is an association. If

these families were sets then we could have called  a function. You cannot call it a function

just because the domain and co domain are not necessarily sets okay? So, we use the association

which you express as follows: for each object  in , the image will be written as , under

the association . Okay? So that much we do just like function theoretic notation.

(ii) for each pair of objects,  in , you have objects  and  in , right? On the other

hand,  you  have  the  sets  ,  ),   So,  these  morphisms  to

morphisms, now these are sets and we have a function for which we write   again or a little

more elaborately   from  to , we are writing the same , each

morphism here is taken to a morphism there. So the image of  under  is called  where :

from  to .

(This is a difference here for contravariant  functor.  What is happening is that the arrows are

going the other way, viz.,  from  to  i.e., instead of from  to

, we have  from  to . Okay? That also is written as , but domain and

codomain are interchanged in contravarient, okay? That is property (ii) okay? Property (i) is the

same for both covariant and contravariant functors; here is (ii) for contravariance,   and  

work in opposite direction.
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(iii) Now third condition is about the composites   of the composites is composites of the ,

both for covatiance and contravariance, but you are taking them in the opposite directions, the

correct  one  which  makes  sense.  So,   for  covariance  and

 for contravariance.

Finally there is  one more condition which is very important:   of identity is  identity of the

corresponding object: . 

This must  be true for whenever   etc are objects in   and for  all  morphisms   and  

wherever they are inside the category , okay? So, basic thing is that there is an assignment to

each  object  in   an  object  in  the  other  category   and  to  each  morphism in  ,  there  is  a

morphism in the other category v. This assignment must respect the composition law, and the

identity morphisms must go to Identity morphisms.

This is just like a homomorphism of groups; identity goes to identity, compositions should go to

composition that is the property of homorphisms. So that has been generalized here okay? So

such a thing is called a functor. If the arrows are reversed, you say it is a contravariant functor.

Still it  is a functor,  covariant  or contravariant.  What you have to know and keep trach of is

whether the arrows are going in the same direction or are reversed, okay?



The point is  that  we are already familiar with plenty of examples.  This definition has come

much,  much  later  in  our  education.  Now we  are  just  adjusting  our  vocabulary  to  the  new

definition okay, which is actually an ideal thing. So, let us examine what are all known things for

us which fit into this definition, okay?
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So, I already told you the difference between covariance and contravariance is simply the fact

that  covariance  preserves  the  direction  whereas  the  contravariance  reverse  it.  However  in

practice it turns out that contravariance has more mathematical structure in it whereas covariance

is more geometrical and easy to understand. And obviously, historically study of contravariance

was carried out much much later because covariance was easy to understand.
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The second point is the following: Suppose   from   to  , and   from   to   are both

covariant functors. Then there is an obvious way to define a composite of these functors, viz.,

take a take an object  in  and associate directly an object in , how? by taking .

Likewise, if you have a morphism  from  to  you will take  as the morphism from

 to . okay?

So, it  is obvious that  composition defined is this way makes sense. And if both of them are

covariant, then the composition is covariant from  to  . Similarly for contravariant functors

However, if you compose two contravariant functors, it will become a covariant functor. Now

this is one of the reasons why covariance has to be studied first before contravariant, okay?

So, covariance is easy in that sense but it is mandatory for you to study that before studying

contravariance  because  if  we  compose  two  contravariant  functors  you  will  get  a  covariant

functor okay? Composite of a contravariant functor and a covariant or a comopsite of covariant

functor and contravariant one will be contravariant. So, contravariant functors are similar to anti-

homomorphism in group theory and anti holomophic functions in complex analysis, okay? So,

there are examples of these phenomena all over mathematics, alright?
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So, now suppose  is a functor from  to . If two objects  are equivalent in (remember

what is an equivalent in ? There is a morphism from  to  and another from  to  which are

inverses of each other; if there is a such a morphism then the two objects are equivalent) then

 and   will  be  automatically  equivalent  in  .  Namely,  if   from   to   is  an

equivalence with   as its inverse, then   will be an equivalence   to   with  

being its inverse.

So, this is one of the most effective way functors are exploited, namely, if you know  and

 are not equivalent, then  and  are not equivalent. okay? So, this contrapositive of the

statement will be used again and again in practice okay, to derive lots of results. You will have

several such illustrations okay? So, already one of them we have discussed right in the beginning

in part I. I can repeat it here, okay? First let us do that example and then come back.

(Refer Slide Time: 12:49)



Namely,  from  the  category  Top to  Ens,  consider  the  functor,  the  set  of  path  connected

components  of  a  space  .  If  you  have  a  continuous  function   from   to  ,  then

automatically it induces a set theoretic function  from path connected components of 

to path connected components of . So, one can easily verify that this association is a covariant

functor. Under the identity map, the corresponding path connected components will go into the

same path connected components and so the induced function is also identity map of the path

connected components, okay.  So, the collection of connected component is a set, if two sets are

equivalent,  means that just that their cardinalities are equal.  

Suppose now the cardinalities are different okay? Then you can conclude that the original space

is  and  are not homeomophic with each other, (in fact, they are not even homotopy type of

each other) because homeomorphism implies the set of path components are in bijection with

each other. So, this is the very simplest way how a functor can be useful. This is used several

times in ordinary topology.

Like look at some thing you may have proved earlier. Suppose you have the union of two axes.

Why it is not a manifold of dimension one? Many other such instances, such as the topological

classification of alphabets as subspaces of , okay?
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So, let me come back here to one of the most important class of functors, the forgetful functors.

What is the meaning of this forgetful functors? It is a very strange name here okay? Start with a

category  whose  objects  may  also  be  considered  as  objects  of  a  larger  category  okay?  For

instance, from the category Ab of abelian groups to the category o Ens of sets. What you have

doing? An abelian group is a set together with a particular structure on it. Only looking at the

underlying set you get this functor.  

Similarly, you can take a vector space and forget the vector space structure and only look at the

underlying set. That gives another `forgetful' functor from  to Ens. Like this you can have

several such instances okay? You can start with an abelian group and forget that it is abelian but

retain the group structure, then you will a forgetful functor into the category of Gr.

So that functor is called a forgetful functor. The whole idea that often we start with a sucategory

and pass to the larger category but keep the binary operation the same. Only certain conditions,

certain extra structures in the smaller category are ignored. That is the meaning of these forgetful

functors  okay.  So,  study of  interrelation  between  categories  and subcategories  is  a  common

feature in all mathematics.



One of the most widely studied forgetful functor in topology is the one from Diff to Top. Begin

with a manifold with its differential structure but you can just consider it as topological space.

This  is  a  very,  very  important  forgetful  functor.  As  topological  spaces  if  two  maifold  are

inequivalent, i.e., non homeomorphic, then there is no chance that as differentiable manifold they

will be diffeomorphism to each other right?

So, first you try to understand them as topological spaces by forgetting the differential structure.

So, whenever you are in  trouble,  you may use extra  structure. For instance,  given a smooth

function between two smooth manifolds, while studying some property of a  function, if you

have to use higher order derivatives, then only you appeal to the smoothness of the manifolds

and consider functions which are twice differentiable etc. 

Often, the concept of forgetful functors is used by us without even being aware of it. Giving a

name to it and pinpointing that this is what is happening makes the concepts much more clear

and much more powerful. That is all. It has its advantage okay? 

Long, long back,  I  learned this  as a  student of chess.  I  used to play chess  reasonably well,

without knowing any of chess theories from any books. One of my friend used to beat me easily.

One day when my chess friend explained me certain terms and names to certain types of moves,

such as a pin, a fork and a discovered attack etc. I said to myself, Oh! after all I am doing all this

and there is nothing new. But after that realization, my score with him became far better than

what it was. So that made me read some chess books and chess theory also okay? So that is the

story of what happens when you have better knowledge of the weapon, the tool that you are

using, whether you are using -sided weapon or not or how to hold it properly so that the strokes

will be more powerful. 

(Refer Slide Time: 20:30)



So, in this way, not only forgetful functors but many of these categorical notions will help you to

make you a better mathematician, if not teach you any new mathematics as such okay? So, let us

go  ahead.  Consider  the  category  Top.  I  have  already  told you  this  example.  As  you  know

cardinality of the underlying set and cardinality of the connected components etc, all these things

are some kind of functors okay? There are several of them.

Because the rest of them composition etc obviously defined and what is the objects set singleton

what is the element of this one that is not a set possibly because we know category is set of all

sets is not a set now that becomes a one single object, the objects themselves may not be sets. So,

this is an example for that once you have this you can make many more examples of going to

just to illustrate that objects of a category may not be sets.
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Now let  be any category. I want to construct another category out of this, namely, let  denote

the category whose single object is  itself okay, the singleton  is the . There is only

one object. I have to define morphisms. Take  from  to  to be the singleton set consisting of

the identity functor. So, this is an example of a category in which objects may not be sets.

I mean I could I give many other examples, more complicated examples of categories in which

objects  need  not  be  sets.  However,  I  waited  for  this  particular  one  so  that  I  can  tell  you

something else. Now we know what is the meaning of a functor, and we have made a functor as

a morphism. A morphism occurs within a category from one object to another object, whereas a

functor is from one category to another category. However, here is an example wherein a functor

has become a morphism of some other category. 

Now I am going to define two functors here one is covariant and contravariant. These are not for

fun. These examples are very,  very important. But the way I introduce them looks like I am

simply cooking something. Start with a category  and fix an object  in it. Vary the objects in

the second slot here. For each object   of  , you consider  . (Or you

can do the other way round, namely take the assignment  to  There

are two of them.)



So, this will be an assignment from the category  to the category of sets Ens because you know

that the morphisms always form a set, okay? So, this definition of  operating upon 

is  . So, this dash is the second slot on the right. So,   occupies that slot. (Here,  

comes on the left slot,  okay?)

Now having defined the association on the objects I have to define the association of morphisms.

Take  any  morphism   from   to   in  ,  define   from   to

 (and   from   to   as follows: For any   in

 put  (respectively for any , put ).  

You will see easliy that both of them are functors, first one is covariant functor and the second

one contravariant  okay? So, these are called representable functors of the category  . I have

cooked up these functors right?  In fact, from the singe category,  so many functors viz., for each

object  there are two functors one covariant and another contravariant. The whole idea is that if

you know these two functors for all object   in  , then you know the category  perfectly. In

other words, these two functors will bring out various properties present inside . So knowing

these two representable functors is the key to understand a given category okay?
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So,  this  is  where  I  will  stop  today.  Next  time  I  have  to  explain  the  canonicalness  of  the

assignment  to  in group theory and the assignment  to  in vector spaces. So,

this is where I will stop today thank you.


