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More Examples
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We should now continue to give some more examples,  familiar examples  of categories.  We

studied the topological category, the homotopy category and the simplicial category and CW

category. The more important category of topological spaces is the smooth category denoted by

Diff by me, but other people may denote differently, notation is not all that uniformized. So,

what are the objects of this category? They are smooth manifolds and morphisms are smooth

functions. 

So, this category is called the smooth category and is denoted by Diff. Some of you who have

not studied any differential topology, this may not be quite familiar. In any case,  we are not

going  to  do  anything  in  this  category  right  now,  in  this  course.  However,  I  would  like  to

introduce  a closely related category to  this  one which is  actually  somewhat  larger  than this

category Diff, in some sense and you will be comfortable with it. 

(Refer Slide Time: 02:01)



So, that is denoted by small `diff’. It is actually larger than Diff in some sense. The objects of

this  diff are subspaces  of some Euclidean  space.  There is  no other  condition. All  subspaces

Euclidean spaces  are allowed here.  And what are the morphisms from one object to another

object? They are all smooth functions. Now, this word `smooth functions' on arbitrary subsets of

Euclidean space you may not be familiar to you. So I am recalling it for those who know it and

for those who do not know this, they will learn. 

A function from  to , where  is a subspace of some  is said to be smooth if there exists

an open subset   inside , (not   is a subset of  ) and a smooth function   from  to  

which extends .  is subset of  and  is open and  is a function on  to ,  restricted to 

must be  . Why I am making such a definition. Because you all know the meaning of first-

differentiability, twice-differentiability, smoothness etc., of functions defined on open subsets of

. But you may not know what is  the meaning of differentiability of functions on arbitrary

subsets. This is the meaning. With this definition,  diff category becomes very familiar to you

from your calculus courses. So, this is one of the important categories. 
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Now, the category  of open sets in a single topological space . This is a wonderful category.

But  this  is  again  not  going to  be  used  in  this  course,  but  this  will  be useful  when you do

cohomology theory, sheaf theory and so on. What is ? For this category the objects are

nothing but all  open subsets of  .  If  you denote the space by   then  = . So,

object sets are open subsets, each object is an open subset of . What is a morphism from  to 

? There are two cases.

Whenever   is contained inside , take = the singleton set consisting of the inclusion

map. If   it is not contained  , take it to be the emptyset. Note that   is the singleton

containing  and that serves as a -sided identity. So, this category is quite useful in the study

of sheaf theory. 

(Refer Slide Time: 05:36)



Now, I come to examples from algebra.  The first example is the category of groups  Gr. All

groups are taken as objects, morphisms from one group to another group are homomorphism and

composition is just like set theoretic composition. Does that convince you that it is a category?

Associative  law is  there  and identity  law is  there  and that  makes  it  a  category.  What  is  an

equivalence  here?  Isomorphism  of  groups.  What  are  equivalence  of  objects?  Isomorphism

classes of groups.  
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There is a very nice subcategory Ab here. Namely, you only take abelian groups as objects, the

rest of the things are same as in Gr. Namely, if you have two abeliean groups, what is the set of

all  morphisms,  same  as  in  Gr,  viz,  all  homomorphisms.  No  special  conditions  on



homomorphisms between abelian groups. Every homomorphism is fine. And the same identity

map is the -sided identity here.  

So,  that  is  a  category  which  is  a  subcategory  of  category  of  all  groups  Gr and it  is  a  full

subcategory, because whenever you have  , where   are abelian

groups.
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Similarly, another important example which is very familiar to you is . Take a field , fix

it. Then take all vector spaces over  as the family of objects. What are morphisms? Vector space

linear maps. Linear maps from one vector space to another vector space over . The field has to

be fixed to make it a category then if you take the composition of linear maps it will be again a

linear map. Identity map is a -sided identity. All that is fine. 

Similarly, instead of  being a field, if you take  to be a commutative ring and objects are

what are called modules over  , instead of vector spaces. This is another important category

which we will be using all the time in this course. So, what are morphisms between two modules

 and  ? They are  the so called  -linear  maps.  The ring   is  fixed here,  you cannot take

morphisms from a module over   to a module over  , where   and  are at different rings.

(That is an entirely different concept, which needs deeper algebra to be handled but which may

not lead to any category.) 
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Next comes a groupoid category  . It is an algebraic category, however, it depends upon a

topological  space  .  Later  on,  we will  conceptualize  this  also.  But  right  now,  it  is  just  an

example of a special kind of category. What is this category? Fix a topological space  . Then

what are the objects? Objects are elements of the underlying set X.  So  is is nothing but

 itself; elements of  are objects. What are morphisms? 

? What is it when  and  are elements of a set ? Let us try taking  to be the set

of all paths in  from  to . A path   is a continuous function defined on the closed interval

, we must have   and  . The collection of all such paths will be taken of

. They do not look like functions, they are certainly not functions with domain   and

codomain  .  How  I  am  going  to  define  the  binary  operation?  Intuitively,  I  am  trying  the

concatenation of paths as the binary operation, whenever they are defined--- if the first path is

from  to  and another path is from  to , then their concatenation is defined, which you may

call composition of paths, viz. first you trace the first path and then the second path. 

Now, the only problem here is with associativity as well as identity. You the concatenation of

paths does not satisfy these laws. Therefore, we have to modify the definition of morphisms,

namely, instead of taking all paths, what you do is to take homotopy classes of paths, path-

homotopy classes.  Recall  that  path-homotopy is  what a homotopy which keep the endpoints

fixed. Take each class as one single member of  . Then you know that concatenation is

associative as well as has -sided identities. The constant paths play the role of -sided identities.



For each , the constant path  will be a -sided identity, left identity for paths starting at 

and right  identity  for  paths  ending at  .  That  will  completes  the definition of  this  category,

denoted by this . It clearly depends upon the topological space . The letter  corresponds to

paths. This category is called the fundamental groupoid category. 

So, the constant map at , that will be -sided and at  for path is fixed which end there as well

as  path  is  start  from there that  will  complete a  definition of  this  category.  This  category  is

denoted by this  depends upon  this  corresponding to whatever paths and this is called the

fundamental groupoid category. Why it is called groupoid because every morphism is invertible

you know that if you take a path from  to , there is a the tracing the path from the other way

around  to . 

Why it is called groupoid? Because every morphism is invertible. You know that if you take a

path from  to , there is a path obtained by tracing this path the other way round from  to . So,

. That defines a homotopy inverse for the path  Therefore, every morphism is

invertible. So, such categories are called groupoids in a more general setup.  is one such. 
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So,  concatenation  of  path  homotopy  classes,  with  the  class  of  constant  paths  as  two  sided

identities, and every morphism is invertibile, these are the things in .
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More generally, any category in which every morphism is invertible is called a groupoid. That is

why we call  also a groupoid. As a particular case in this category, look at . What are

the elements? Path-homotopy classes of loops at . They form a group, namely, . this is

the notation. This is called the fundamental group of  at  which we have studied thoroughly in

part I. So, more generally, you have fundamental groupoid. 

 is empty if  and  are in different path components of . You should observe this also.

 is nonempty means  and  are in the same path component. So, there is no assumption

the space   itself.   may be path connected or may not be connected, but groupoid is well

defined. 
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Now, I come to some other kind of examples, slightly from a different area, viz.,  posets. This is

another very important example. You start with a partially ordered set. Associated to that you

can define a category and associated to that category you can define a partial order. This way

partially ordered sets can be converted into category and you can apply the theory of categories

to derive theorems in partially ordered sets, and so on. 

So, how do we do this? Let us define a category associated to this  , that is the partially

ordered set. What are the objects of this new category? They are just elements of . For any two

elements   and  in  , take   to be a singleton element if and only if  , otherwise

take  to be empty.

 

(This is similar to what we had in the category . For a given in topological space . we had

the category . It is similar to this one I can see. It is actually more general than that.  can be

obtained as a special case of this one.) 

So,  is a singleton if , otherwise it is empty. The binary operations are defined in an

obvious way because of the transitivity of the partial order relation-- if  , and  , then

you know . That is the transitivity of the partial order. Since all the sets 

and  are singletons, the is exactly one function from  to  and

we take that to be the composition. Finally,  has only one element there, which clearly is



a  -sided  identity  for  this  composition.  This  is  the  category  associated  to  a  given posets,  a

partially ordered set. 
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So, what I want to say is these steps can be reversed to some extent. Start with a category  

whose family of objects is a set . That condition is a must. (In general,   may not be a

set.) Next suppose that for each pair of objects , the set of morphisms  is either empty

or a singleton. If it is empty, do not do anything. If it is a singleton define . Further assume

that if  is nonempty then  is empty. Then you get verify that the above order is a

partial order on  and the associated catagory as above is the category  that you started with.  
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So, now let us look at another example from algebra. Recall that by a semi-group, we mean a set

with an associative binary operation, and a -sided identity. Like the set of non-negative integers

with  addition,  for  example.  That  is  a  simple  example  of  a  semigroup.  In  other  words,  as

compared to a group, inverse may not exist in a semigroup. In particular, every group is also a

semi group. A semi group may not be a group because inverses may not exist.  But inverse, if it

exists, it is unique. I don't have to say that separately. So, all groups are semi-groups also. The

collection of semi-groups is a larger category than the category of groups, that is all. The semi

groups are very important in function theory and so on. 

So, in any category , for any object  in ,  is a semigroup in two different ways. What

are these ways? By taking the binary operation  in two defferent ways, viz, either equal to

 or equal to .  Both of them will give you a semi-group structure on . 

So, conversely, suppose you are given a semigroup . There are essentially two different ways

of thinking this as , where  is a category. What is this category? The category  has

only  as an object.  is the semi-group . But unfortunately, you do not know whether

you are going to take the left multiplication as the binary operational or the right multiplication.

So, there is that much of ambiguity. So, actually both of them can be taken so that we get two

different categories, one is the opposite of the other.
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Sometimes in a semi-group you may not inverses but a weaker condition which is quite useful. A

semigroup is called a monoid (these are some words wich may differ from author to author, you

may not pay much attention to them) if it is cancelative, i.e.,  implies . A group is

of course, automatically, a monoid. Look at the semigroup of positive integers with the operation

of multiplication. It is cancelative. Similarly, the set of non negative integers with the operation

of addition.  

For your school days, you know that if   is equal is to something equal to  + some other

number, then that other number must be equal to  , even without knowing the operation of

subtraction. This is built in a child’s understanding. This is nothing but the cancellation law. It is

easier to understand this cutting down operation, That cutting down operation later on becomes

the  subtraction  and  then  goes  on  to  define  neagive  integers.  So,  cancellation  law  can  be

understood without having invertibility.
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So, the example  illustrate the fact that there are many interesting categories in which

morphisms are not necessarily functions. The first such category is example  . The homotopic

category. A homotopy class becomes a morphism. At least here objects are sets. 

What  is  example  13?  Let  us  see.  What  was  example  13?  The  fundamental  groupoid;  here

morphisms are path- homotopy classes of paths. They are not even functions from   to   of



homotpy class of class of functions. They are all represented by functions from the same domain

viz., the closed interval .  

In example 14, you see that a morphism is just a binary operation  that will be a morphism.

So, this kind of abstractness has to sink inside your mind slowly. All these are concrete examples

in category theory. There are also some categories called abstract categories. You can imagine

how abstract they are. Things that we have considered so far are very concrete examples. There

are so called abstract categories which we are not going to deal with in this course.

(Refer Slide Time: 25:17)

So, since I already introduced what is the meaning of a subcategory, let us have a quick look at

some  more  examples  of  subcategories.  Now,  you  have  already  studied  one  such  example,

namely, the Ab category of abelian groups is a subcategory of the category of groups. Not only

that. It is actually a full subcategory. 

Similarly, if you take the category Diff. What are the objects? They are manifolds? So, before

being manifolds, they are actually topological spaces and a smooth function is automatically a

continuous function. Therefore,  Diff can be thought of as a subcategory of topological category

of all the topological spaces and continuous maps. But this is not a full subcategory because all

continuous maps may not be smooth. Therefore, it is strictly smaller,  not as a full subcategory.

So, we have examples as well counter examples also to understand clearly what going on. 



Now I come to the category diff. And I have told you that this is, in some sense larger than Diff.

Why? because there is a theorem is differential topology which says that any smooth manifold

can be embedded inside some large . When you say `embedded' it will become diffeomorphic

to  a  subset  of  ,  for  some  large  ,  depending  upon  the  manifold.  This  is  a  theorem  in

differential topology. It tells you that every manifold can be thought of as subspace of some .

Therefore, you can think of objects in Diff as objects in diff.

What are morphisms? They are smooth functions in either case. This way you can think of Diff

as a full subcategory of  diff. But inside  diff, there are more objects which may not manifods,

such as the union of -axis and -axis in . But you can define (and we have defined) what is

the meaning of smooth functions on it. Similarly, if you take a square in , that is not a smooth

manifold because it has corners. 

Similarly you can take triangle. It is not a smooth manifold. But that are all smooth objects as

members of  diff. You know what is the meaning of smooth functions on them. So, there are

many more objects in diff which are not smooth manifolds. Smooth manifolds form a small part

of objects in diff. So, in that sense this capital Diff is a subcategory of small diff. 
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Now, this is an open kind of exercise for you while studying these two models attaching go back

and just keep seeing what are the examples of what category is an example can be thought of as a

subcategory of the category of sets you will receive many of them are you will see some of them



are not and that is why I told this Ens is a mother category for many of them. This is what you

have to do, then we know which one are which one are not. 

Many of these categories structural categories. They are introduced starting with Ens. Namely,

you start with a set   and then you put extra structure on it, such as a topology, put a binary

operation which makes it a group, may put a two or more operations which makes them into a

vector space and so on. These are what extra structures. These are all to begin with, they said,

even if you put extra structure. Still, the objects are sets. 

What are morphisms? Again they are functions. So all structural categories are subcategories of

Ens. So to understand these comments, you know, understanding takes you more time. You have

reread whatever has been done so far. Read again and again, a couple of times. Be sure of what is

going on. Thank you. That is all for today. 


