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Today we begin the subject the CW-complexes. In this chapter, we shall first introduce the

most important class of topological spaces for algebraic topology, namely, CW-complexes.

We shall study some fundamental point-set- topological properties of these spaces, and relate

it to the simplicial complexes that you have studied in part I. And also in subsequent chapters

we will study its relation with fundamental groups and various other things such as homology

and so on as and when time permits.

CW-complexes  are  built  up out  of  nowhere  perhaps,  by a  sequence  of  operations  called

attaching cells. The concept of attaching cells itself was studied in part I but I will recall it so

as to refresh your memory.
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So, fix a positive integer  and indexing set  for each index , choose a copy of the unit disc

in . So, all these copies are supposed to be disjoint now, they are copies of the same disc

. Now, suppose  and  are topological spaces, we say  is obtained from  by attaching

-cells from this indexing set if there exists... I repeat, given 2 topological spaces  and ,

we say  is obtained by attaching -cells to , if there exists a family of functions  from

the boundary of the disc , which is  , the sphere, to ,  for each , you must have a

function such that  is the quotient space of the disjoint union of  and all the copies of the

disc  by the relation:

 is equivalent to   whenever   is in the boundary of  . Remember boundary   is

 and then there is a map ;  is a quotient space.

(Refer Slide Time: 03:14)



Let  us  denote  the quotient  map itself  by  .  Now remember,  what is  the meaning of  the

quotient space, the topology on ? What is it? A subset of  is open if and only if its inverse

image under  is open in the disjoint union of these things. The disjoint union of these spaces

is given the disjoint topology, we have to remember that.
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The maps  are called attaching maps for -cells. Let us restrict the quotient map  here to

each   and call them . These  's are called characteristic maps of the cells. They are

homeomorphisms in the interior of  and they are equal to  on the boundary. The image

of  is a compact subspace of  because  is compact and  and  are continuous. So,

we call them closed -cells in this pair .

Notice that why am I writing this ordered pair  is the given space and  is obtained

by this operation. The image of each of these 's will be denoted by corresponding  and

they are called closed -cells of .
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Note that  is an injective map on ; there is no identification within , therefore we can use

the same notation  for the image of  under . 

For any subset  of ,  can be identified with  and  is a closed subset of  iff 

closed in . That is by the definition; if  is closed subset in , then its inverse image under

 is the disjoint union of  and  for all  being closed,  being continuous, 

are all closed subsets of . Therefore they will closed subset of . 

So,  with  this  identification,  it  is  not  just  set-theoretic  identification,  it  is  a  topological

identification. 

We shall now on assume that  is a Hausdroff space. It follows that  is a (closed) subspace

of   and  that  is  why we can  use this  notation  ,  the usually  notation for  pairs  of

topological spaces. Whenever the notation  is used,  is a subspace of . That is the

standard notation for pairs of topological spaces.
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So,  here  is  a  basic  lemma  out  of  this  quotient  space  topology.  All  these  things  are

consequences of just taking the quotient space topology on the disjoint union of   and .

So, first one is:

(a) Each  is a closed subset of . So, that is where we have to assume that  is Hausdroff

space,  being an image of a compact space ,  is a compact subset of . The boundary of

 is a subset of  that will be closed. So, that will helped to see that  itself is closed .

(b) Each characteristic map is supposed to be a quotient map.

(c) A subset  of  is closed in  if and only if  is closed in  and  closed in 

of . So, this statement (c) is exactly a copy of the characterization of the quotient topology

here. Here the characterization is in the top space here, on the mother space, whereas this part

(c) here transfers the whole thing inside the quotients  itself. You do not have to go above.

Nothing new but you have to prove this one. 
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What is the proof? Proof is using again and again Hausdroffness of  and this the quotient

map. I mean what is the definition of an open subset in  or closed subset in ? So, first of

all,   is Hausdroff and   is compact for each alpha   which we denote by  ,

denoting the boundary of  ; all the interior points are taken away from this cell. This is a

closed subset .

Now, fix a . To see that  is closed for every , I am fixing one , is that clear? All that you

have to do is to go back to the mother space and check the criterion, namely,  must be

closed in the disjoint union of   and all the  .   intersection   is nothing but  

which is a closed subset of .   is the whole of , since  is the identity map

here. And finally, its intersection with  is equal to to  inverse of  and hence is

closed in , for . 

 

So, this proves (a). 
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Once (a) is proved, to prove (b) i.e., the quotient map  restricted to each  onto its image is

a quoteint map, we will take a subset  of  such that its inverse image under  is closed in

. We have to show that  is closed in , which is the same as proving that it is closed in 

because  is closed in . 

 

So, once again, this means that we have to show that   is itself closed in here in the

disjoint union. 

By the hypotheses it follows that   is closed , because you have started with the

hypothesis that   is closed in  . Intersect it with the boundary, it will be closed in

there. So, once you have this the rest of the argument will be as in (a). 

 Now, (c) is now a direct consequence of (a).

What is it? A subset  of  is closed in  if and only if  is closed in  and  is

closed. ‘Only if' part is obvious. To see the if part, we have to see that   is closed.

 is . So, that part is fine.  is closed in  and  is nothing

but  and hence is closed. So that will complete the proof that  itself is a closed

subset of .
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In the definition of the attaching cells,  we could have taken the indexing set to be empty also,

just for logical completeness. We should include this case. We should not assume that   is

non  empty.  Of  course  what  you  get  is  the  space   itself,  i.e.,  when  you do  not  attach

anything. Then  will be  itself. So, the family  could have been empty.

If the family has just one member , then  is nothing but the mapping cone of  from

 to  is a function and then you are filling up this  with a cell, with  inside the

mapping cylinder of , that gives you the cone. So, this would have been obvious if you know

the definition of mapping cylinder and mapping cone. I am not recalling that here. Anyway,

that is a special case. In that special case, we have this simple notation also . Since

there is only one cell, there is no need for writing indexes .
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In general, without the assumption of Hausdorffness,  may not be closed in . Very simple

examples can be given. There is no problem there.  However, even if you do not assume  is

Hausdorff,  will always be a closed subset of  in the attaching process.
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Also, unless on the boundary,  namely , the attaching map is 1 to 1, you will not have 

homoeomorphic .  
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So, here in the figure, I have given you an example of attaching -cells,  i.e., for . The

pictures can be always   or   dimension anyway. So, this is  your  , which looks like  

anyway.   is the interval  . In the first cell,   has gone here and   has gone here.

 is this point and it is identified here,  is this point and is identified here, that is

the meaning of this identification space.

The rest of the interval  could be just anything homeomorphic to open interval here. Similarly

another open interval here another cell. Remember interior of the cell, interior of the cell,

interior  of this cell  they are already on the boundary what happens that is  left  to  , for

boundary should always be mapped somewhere inside . In this  , the third cell both the

points of the boundary have gone to a single point, viz., it corresponds to  being a -point

map. 

Now you see that  is not homeomorphic to  at all, these things are homeomorphic this is

not. So, this is what happens if you draw a picture. Suppose I draw a line like this that is not

considered that cannot be attaching map that is not part of attachment. On the other hand I

can just take a point here just a point here that is allowed then it will be attaching a -cell. It is

not attaching -cell. So, just now we have defined k equal to a constant and  . So, let me

define what is the meanings of attaching a -cell also. 
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So, we say  is obtained by attaching a -cell (I will define  here -cells, so I want to

include -cell also what is the meaning of attaching a -cell?) Namely, if  is a disjoint union

of  and  where  is a closed discrete subspace of , discrete and closed subspace of . 

itself will be closed in . Infact both  and  will be closed in  by this definition, because

 is a disjoint union of the two topological spaces.  is a given space,  is a set of points the

topology on those points is discrete.

This definition is  completely justified because first of all, you have to say what the meaning

of a -cell or  or -cell. In the zero dimensional vector space there is only one vector,

which  is  the   vector.  So,  -cell  is  just  a  singleton.  It  has  no  geometric  properties,  this

singleton. What is then its boundary? Boundary is empty. So, there are no attaching maps

there. Therefore, no identification takes place. So, this is a logical justification for defining

the operation of attaching -cells. If you have difficulties in this logic you can just take this as

the definition. 

Elements that belong to  are then the -cells of . The space  is a black box. There is no

name for it. You call it the base space if you like. When you attach -cells, they come from a

disjoint set indexed by a family. By the very definition, each point in  is closed as well as

open in the whole space. Thus a -cell is both an open cell as well as a closed cell.
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The quotient topology retains a number of properties of the base space. There are quite a few

topological properties such as Hausdroffness,  which in general,  do not go to the quotient

space. You have studied quotient space thoroughly last time. So, what happens is that away

from , you can expect a few properties of the Euclidean space inside , I mean  has a

number  of  topological  properties  inherent  from  the  Euclidean  spaces,  because  we  have

attached copies of . 
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The first attempt here is to check what kind of things may happen inside   and  ----

some elementary observations. So, I have put it as a lemma which is the starting point of our

topological study here.



Take a subset  contained in . Fix an  strictly between  and . Let us put  equal

to the set of all  such that  and such that when you divide it , namely,

the corresponding unit vector is inside . 

Remember  is a subset of . So, it has to be unit vector. Take all such elements  such

that  is in .

How does an element of  look like? It is just like taking a vector  and multiplying

it by some number  between  and . I can also say that  consists of a point in  and

then a small line segment going towards , but   is strictly avoided because  is less than .

All those points you take. Since  is bigger than , we can take  to be one as well. Therefore,

 is contained in 

Infact,  intersection  will be exactly equal to  is contained in the intersection is

clear but intersection   is precisely equal to   because   is equal to   itself when

. 

 

 is an open subset of  if and if only  is open in . That is also clear. If  is

an open subset, its intersection with the sphere is an open subset. That is clear. 

If  is open in the sphere, why is  open? Because it is first of all a subset of 

which  is  open  in   and   is  homemorphic  to  ,  and  under  this

homeomorphism   corresponds  to  ;  clearly   is  open  in

.   

The last thing which is very important is that: you look at this map which joins  and ,

along the line segment  . If  , this is  ; if  , it is  . Thus it

defines a strong deformation retract of  onto .
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That is the picture. If you allow epsilon to be zero also then there may not be any deformation

because you do not know where to send the zero vector. Since we have assumed   to be

positive,   does not contain the zero vector of  . This is important. As   varies the

collection  forms a fundamental system of neighbourhoods of  in .
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So, from this result, now, we want to extend this one to the attaching cells from  to .  So,

what do we do? Take a family ’s and suppose that we have attached them to  just like in

the definition above. Now start with a subset  of  and then for each  look at  that

is a subset of  the boundary of , take this as  in the previous lemma. Choose some 

between  and  and form the neighbourhood  of that. 



Let us say that   is open in  . Then that these are open in   (not otherwise). Take the

disjoint  union  over  all   and  include   also.  Now take  the  image  under   and  call  it

 in the earlier was defined only for this picture. Now, I have defined it for the

general case when  is obtained from  by attaching -cells. 

The first thing is to see that  is nothing but .  is open in  if and only if

 is open in . 

These claims are straightforward from previous lemma. if  is open in  implies  is

open in , which im turn implies that  if it is open  for each . Therefore the disjoint

union of all these together with  is open and finally under . This is the full inverse image

.

So,  that  follows from directly  from previous  lemma and  quotient  topology definition.  

which is equal to . We can  or , because we have identified these things they are

subsets  of  .  The  strong  deformation  retracts  for  each   patch  up  to  define  a  strong

deformation  onto . 
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What you get is  is shift to  put it this identity and in the rest of these things put this is

. 
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So, this patch is up to define a big homotopic from this entire space to be space,   of that

cross I have taken identity, we will come back to . So, this will give you a homotopic from

 to   homotopic  of  the  identity  map  with  the  retraction  there  on  to  

everything will go inside . So, this property recently we are going to use it again and again.
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Here is a corollary. Recall that this notation  space means what? A Hausdorff space  plus

regular similarly  means a Hausdorff space which is normal. Now, this is a simple exercise.

Maybe, you should take some time to verify each of them, one by one.  is obtained from 

by attaching -cells where  is any non negative integer. If  is Hausdorff,  or  then so is

.



This is left to you as an  exercise which you should be able to do by yourself. Do it so that

you get familiar with what is going on with this lemma. 
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Now, let me give you the definition of CW-complex, a relative CW-complex. We will define

slightly more general things, just like attaching maps from  to . 

Before proceeding further, by the way, in the attaching process, note that we can take  to be

the emptyset also. Can we really? If  is the emptyset and . What are the maps? There

is no map. So, you will never get to attach any cells. But  can also be . You can attach -

cells. So, taking  equal to emptyset is allowed in which can you must remember that you

can attach on -cells) and of course, you can always take the family of attaching maps itself

to be empty as well. That is also permitted. 

So, let come to the definition of a relative CW-complex. 

Some people  like  to  start  with  a  space   and  say that   is  obtained by  a  sequence  of

processes  or  operations  namely  each  operation  is  attaching  -cells  where   ranges  from

 and so on. Instead I shall give a slightly more elaborate definition here. 

A  relative  CW  complex   consists  of  a  Hausdorff  topological  space  and  a  closed

subspace , (Hausdorffness is a part of the definition some people do not assume it but I am



going to assume this), together with a sequence of closed subspaces   satisfying

the following conditions:

(i)  is a subspace of  and  is a discrete space. (Note that this precisely means

that  is obtained by  by attaching -cells. Instead of saying that I have just said 

in discrete space  is a closed subset.)

(ii)   is  obtained by attaching  -cells  to   for  all  .(So, what  is  ?  It  is

obtained by attaching  -cells to  . Remember that   could have been just equal to  

because all that you need is   is contained in   and the complement is a discrete space

which may or may not be empty. So, do these for each , then what is ?)

(iii)   is just the union of all these spaces  . (Remember by the very definition

here  will be a subset of  and so on each of them closed in the next one. So, your

sequence of closed subspace  contains an  contains  and so on take the union that is

your .)

(iv) The last condition is about the topology on . This topology is called the weak topology

or what is also known as the coherent topology or... all these names are of no use unless you

know what is the meaning. So, meaning is precisely this. A subset of  is closed if and only

if its intersection with each  is closed in . Remember each  is a well defined

topological space being obtained from  by attaching -cells.  

So, the topology on each  is well defined as soon as you know what is the space  and

you know what are all the attaching maps, inductively. There is no ambiguity there. But what

is the topology on  which an infinite union that has to be defined and this condition (iv) for

here takes care of that.  It  says the topology on   is  coherent  with respect  to each  .

Automatically with this definition each   will be a closed subset of the whole space  

itself and not just closed inside . All these are easy consequences of this condition (iv).

A very interesting special case I told you is that when  is empty. Then  cannot be

empty, cannot be mean what? If it  were empty then inductively each   will be empty

because  is obtained by attaching -cells to an empty set . Therefore,  itself will

be empty. 

So, we conclude that if  is nonempty then  is non empty. 



Likewise, in between you may not attach any cells. For example there may not be any -cells

at all or you may not attach -cells at all you can directly attach -cells. It is possible that, in

between, some  may be equal to . So, all these things are allowed. 
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As told before, one of the interesting case is  is empty. Then we do not write  at all;

we just write  and that is called a CW-complex. So, let us re-examine this special case. A

non empty CW-complex starts with some non empty discrete space  (So, there will be a

set of points you can call them as vertices just like in the case of a simplicial complex, points

of  are called -cells or vertices. So, it is a discrete space then. Then  is contained by

attaching some  -cells to   and then we attach  -cells and so on. Each time there is no

condition on the number of cells, there may be just one -cell, there may be 50,000 or more -

cell and so on. The only thing that is needed is if you take a k cell, the attaching map of that 

-cell must be a map from  into . So, these  are called the -skeleton of . It

is just a name and useful name. 
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So, that is what it  may happen; after certain stage, there are no cells, no cells have been

attached, i.e.,  . If that happens, we call this  of dimension . Suppose

there is at least one -cell and no -cell for any ,  then we say dimension of . 
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These are just definitions. So open cells, characteristic maps, attaching maps all these things

make sense in the case of(relative) CW-complexes also all the terms, you have learnt in the

case of attaching -cells. as you maps. That is the just the gist of the definition. We shall take

up this study next time. Thank you.


