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So, this chapter is a quick introduction to the language of categories and functors. What we

are going to do is just a limited introduction. Interested reader may look into the books I

refered at the end of the lecture notes. The book by Adamek is freely downloadable and it is

quite a readable book. The topic as I told is the language of modern mathematics, takes some

time to mast it. So, I would not say that, right now you will become a master of whatever I

want to introduce here, though, that itself is very minimal. But because I am going to use this

language again and again, certainly by the end of this course, I hope you will all know how to

use this language. Studying categories and functors for its own sake is not at all done here.

You must take note of that.  It is not like we are going to write poetry in this language, we are

merely trying to learn the market language or know how to do day-to-day business. That is

all.
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All  sciences  are  essentially  study  of  patterns.  This  is  more  so  in  mathematics.  The

fundamental concepts such as number and space combine to produce enumerable patterns

that we come across in day-to-day life. All mathematics concepts involve a certain family of

objects which fit into a pattern and then the study involves relations among those objects. 
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Let us consider some examples. In topology, we study the so called topological properties of

topological spaces. The objects that we consider here are topological spaces with the relations

among  them  being  what  are  called  continuous  functions.  The  fundamental  property  of

continuous  functions  is  that  the  composite  of  two  continuous  functions  if  defined,  is  a

continuous function. And identity map from any space to itself is also continuous. Okay? 

(Refer Slide Time: 03:14)



Similar statements can be done about groups. Suppose you are studying groups, then what are

the  functions  from one  group  to  another  group,  that  we  are  going  to  study?  Answer  is

homomorphisms.  Once  again,  composite  of  two  homomorphisms  if  defined,  is  again  a

homomorphism and identity map from any group to itself is also a homomorphism, Okay?

We can go on listing such examples like vector spaces and linear map, modules over a ring

and the module homomorphism which are also called linear maps, and so on. Okay? 

So, what we shall do is give a strictly rigorous definition of categories and then re-examine

some of these examples, in the light of this definition which extract certain basic properties

that we are trying to explain.
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Category theory is a language that sums up this aspect of mathematics in a technically precise

way. Not so surprisingly, it can help you prove theorems also. This chapter is divided into



four  sections.  First  section,  you  will  see  definition  of  a  category  and  sufficiently  many

examples.  In  second and third,  we will  study relations  between them under the name of

functors. In 4th and 5th, we see more examples of certain standard notions which can be

expressed,  which  have  been  expressed,  which  have  been  studied  without  the  categorical

language, but when you put them in the categorical language, how nice they become, okay?

So, with this background, let us begin with the abstracts. 
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A category  consists of, (I can say that it an ordered quadruple of certain things but, I do not

want to use that kind of language), it consists of a family   (read it as objects  C),

members of this family are called objects, okay, satisfying certain properties. That will come

in the definition. The whole definition has to be understood together, before you understand

individual stuffs here. So, what are the properties? One by one I am going to list them. 

(i) For each ordered pair   of objects, i.e.,  are members of this family or a class,

(take note that we are careful not use the word `set'  this family, there is this slight difference

here,   is a collection or you can say it a class but do not use the word set. However,

what makes sense is the membership relation between objects), there is assigned a set (this

time it is a set) denoted by   is a set with the property that the two sets  ,

 are  disjoint  unless   and  .  This  must  be  true  for  all  members

 of  . These are all axioms, all are part of the definition, each word each

comma here is a part of the definition that we are making, okay? The elements of 

are called morphisms in , with domain  and codmain . Okay? 



(Refer Slide Time: 08:09)

(Refer Slide Time: 09:05)

 

(ii) If you take a triple of objects, , then you have three sets , and

 There is a binary operation from   to  . Now these

three are all sets and so binary operation makes sense. So I write it as   goes to  .

Okay? Similar to the standard practice of writing compositons of functions. These binary

operations are for each triple there is one okay? So, if you change those triples the operations

also change but we are using the same notation circ. They are collectively associative. What

is the meaning of `collectively associative'? In the following sense namely, given  from  to

 from  to   from  to  , then we have  , right, we also have  , these two

things make sense.



What we want is  is follows by  to get an element of  that element should be

the same   followed by  . That is the brackets can be interchanged like this, just like

associativity  of  compostions  of  functions.  Collectively  associative  means  whenever  the

compositions are defined then we have the associative law. The compositions may not be

defined unless the arrows match, just like the case of sets and functions. Okay? 
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(iii) The third condition is that for each object  , there exists a unique   (note this

notation) inside , the set of morphisms from  to , there is a unique element which

has the property that it is a -sided identity; for all  from  to  and for all  from  to ,

you have  (this makes sense) is equal to  and  is equal to . Thus  is a -

sided identity for the binary operations okay? This completes the definition of a category. 

A morphism   from   to   is  called an equivalence in the category  ,  if  there exists a

morphism  from  to  such that  is equal to  and  is equal to . Then  is

said to be the inverse of   and   is said to be the inverse of  . In fact, it is an elementary

algebra to verify that the identity elements in  as well as inverse of morphism it exist

are unique. There may not be any inverse of a given morphism in general. Morphisms with

inverse are also called invertible morphisms. 



So, if there is an equivalence  from  to , then we say  and  are equivalent objects in

. Okay? That is the end of some definitions. So, we have defined a category? Objects

in it, morphisms, equivalences and equivalent objects. Okay? 
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Now, I  want  to  make a few elementary remarks.  Often when more than one category is

involved at a time in the discussion, for object , instead of just the simple notation

,  we  write   to  indicate  which  category  we  are  working  in.  Also  the

notation  (or  is used in place of  (respectively, 

). 

Suppose, I am having two different categories   and  at hand. It may happen that objects

under discussion are objects in both of them. Therefore, if I just use  , you do not

know whether I am talking about morphism is it is you category  or category , right? So,

that is why in that case, we use the elaborate notation. When you know that the discussion is

going on in single particular category, then we us the simpler notation as usual is a practice.

But this kind of thing should not be done when you are dealing with a computer for instance.

Computers would not understand unless you are strictly following the notation that you have

fed into it. By the way, computer scientists use the category theory very much okay? 

So, it follows easily that identity morphism is unique in  for all . Try to write down

a proof yourself. Note that   is a set but it may be empty also. Clearly,   is

non empty, because  is there.



The collection of all objects in  need not be sets, Okay? We will see some examples later on.

We have already remarked that the family   need not be a set. You need not bother

about these purely logical problems at this stage. That is the key word here. Because if you

get into this logical problem at this stage, you will never learn the category theory. You may

bother  about  it  only  when  you  are  talking  about  foundational  mathematics,  like  logic,

machine learning etc.,  The logicians are more interested in this aspect of category okay?

Unless, we have some problems we should not bother about that aspect. Right now you learn

the language.
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We have also remarked that if a morhism  is invertible then its inverse is unique. therefore, I

can use the notation  for the inverse of , Okay? The equivalence of any two objects in

 defines an equivalence relation, namely, it is reflexive, transitive and symmetric. The

central problems in mathematics is to determine the equivalence classes in any category that

you have chosen. 
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One more remark. The condition of disjointedness. Remember that I told you  and

 are disjoint unless  and . There is no overlap among them. That is

very important here right now, you may not understand the importance of this right now,

because in standard mathematics such as in calculus and so on, right from the ancient days of

Euler, Gauss and so on, we are not doing this, and we have to keep that tradition and cannot

give it  up, okay? For example,  I will  give an example.  You are writing `sin' for the sine

function on an open interval. The interval could be the whole of  or just , okay? You

can treat the same function as from  to  also, even though its image will be only in .

Moreover, there is also a complex valued sin function defined all over the complex numbers

and we use the same notation `sin' for it okay? In all these examples of the function denoted

by `sin', you take a function, you restrict it to a subset of the domain and still use the same

notation. This practice occurs all the time in mathematics, right? According to categorical

language this is  not  allowed.  The moment  domain or  codomain are  different,  morphisms

have to be treated as different. They are different elements.

That is what we have chosen in the definition of a category. However, I told you that cutting

down clumsy notations is a must in all mathematics that we do, okay? But, for example, this

is not at all done in computer science, by computers, okay? On the other hand, one of the

basic  objects  of  language  of  category  theory  is  to  provide  us  `rigor  without  being  too

verbose'.  However,  to  achieve  this  one,  right  in  the beginning,  we need  to  be very very

verbose. Right? The reward will come later.   



Insisting on having  and  disjoint all the time and so on, in the beginning

seems to you to be very, very verbose. You will see the reward coming in a little later. Just

tell one single statement in the categorical language, it will mean thousands of theorems. That

is the kind of achievement which category theory has done. All right. 
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Let   be a category.  Let us see what is the meaning of a subcategory that  is  what I  am

introducing right now. Okay? By a subcategory of , we mean a category  which satisfies

the following conditions.

(i) So,   is going to be a category by itself. But what is this relation between  and

? Each object of  is an object in  also.

(ii) For each pair of objects  inside , the set of morphisms in  from  to  is a subset

of the set of all morphisms in  from  to , i.e.,  is a subset of 

The third condition is: the binary operation inside  are the restriction of the corresponding

binary operations inside . This condition is similar to the definition of a subgroup, a subring,

vector subspace etc. Okay? 

(Refer Slide Time: 23:09)



Further if equality holds in this one, namely, for  and  in ,  = 

, if this happens for all pairs of  and , whenever  and  are inside , then we call  a full

subcategory of . 
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So, we will soon have examples of this no problem. Right now we will give examples of

categories. As you might have guessed,  the most important and easiest category, which you

may call the  mother of many, many categories,  mother category, (or daddy category) which

is denoted by Ens, (Ens is a short for `ensemble'  a French word, which means `sets'). 

Take the collection of all sets, that is the  (Ens). for this category. All objects are sets.

Okay? What are the morphisms? Morphisms are the usual set functions. The binary operation

is the ususal compostion of functions.



So, verification of the axioms is totally easy because the axioms have been modelled on what

is happening in the sets okay? So, you see that many other examples that we are going to

discuss, they are all in some sense, some subcategories of this category Ens or some slight

modifications. That is why I call Ens the mother category.
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So, the next example I will give you a very simple one. Consider the singleton category P, a

category with a single object. How to do denote this single object? Put just a . There is only

this object. It has no structure, nothing. but it is the only object in P, okay? Then I have to

define morphisms . So, take that also equal to the singleton set. You have to take at

least one element there because the axiom says that  has to be nonempty. And that

element is also determined viz., the identity morphism.

So, the composition is  also well  defined by the  -sided identiy axiom. There  is no other

choice okay. So, this is, in some sense the smallest category. Maybe one can make a category

where the family of objects is empty. I am not going to discuss it further, but that is also

allowed  okay?  Empty  objects.  Other  than  that,  this  is  P is  a  nice  category.  Sometimes

category theorist write this as 1 and the empty category as 0 okay? I am not going to do all

that, but I am aware of such things okay? 

The opposite category of a given category. Opposite category means that there is already a

category , I am going to construct a category, call , the opposite of . Objects of opposite

category are the same as the objects of the original category  , but whenever   and   are



members of this category  ,   is taken to be  , okay? And the binary

operation law is also the same except that you write it in the reverse order:

So, you can easily verify that left identity in  becomes right identity in  and vice versa.

So, the -sided identities are there, no problem, okay? Associativity is also no problem. So,

these are all easy to verify. Not only that, if you take , i.e., the opposite of the opposite

category of  , then you get the category   back. This idea just looks like a totally useless

thing. But proof of some of very deep results in category theory use this idea, which goes

under the name `duality principles'.  We would not have time for discussing that one. But,

because of the importance of this idea in general category, I have just introduced it here, a

very simple idea of constructing in the opposite category. Similarly, the singleton category is

also very important in some sense, though we may not have much use of them. 
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The category of topological spaces is one that  is what we are interested in. What are the

objects? All topological spaces. That collection by the way, is not a set okay? The collection

of all  topological  spaces  is  not  a  set  but  it  is  a  class.  What are  morphisms? Continuous

functions.  Okay?  Binary  operations  are  compositions  of  functions.  What  are  the

equivalences?  Homomorphisms.  What  are  equivalence  classes  of  objects?  They  are

homeomorphism types, okay? So, this is the first example we started with, even before giving

the definition. So, now we can see that it is a good example. 
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In the next example, you will start seeing the power of category theory --- how one can just

change a little bit and express a lot of ideas. Consider the category in which objects are all

topological spaces but morphisms from  to , where  and  are topological spaces, are

not continuous maps, but the homotopy classes of continuous functions. A homotopy class of

a continous function from  to  is treated as a morphism from  to , okay? This category

is called the homotopy category. 

Recall an elementary property of homotopy that if  is homotopic to  and  and  are

defined, then  is homotopic to . We have verified that in part I. Such properties  are

necessary to verify that this homotopy category makes sense, viz., we can define the binary

operations on homotopy classes to be the homotopy classes of composition of representative

functions.

What is an equivalence here? A homotopy equivalence. What are the equivalence classes of

objects? Homotopy equivalent spaces?

Suddenly, it has a totally different meaning okay? And this is the category in which algebraic

topology is all the time interested in, okay?
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So, such a change can happen in different ways. For example, suppose you start with the

category of topological spaces, Top. Change the family of objects slightly. There are various

ways of doing it, like, you can take objects to be simplicial complexes, or CW complexes, (I

am going to discuss them below in detail,) okay? Or just take all Hausdorff spaces as objects.

But remain all continuous functions as morphisms. Then you may change them to homotopy

classes, okay and so on. So, there is a lot of scope in this language. Okay? 
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So,  now these two categories  are  of  importance.  The simplicial  category was essentially

introduced in part one, though we did not have this terminology of category then. Now we

will just verify all those definitions terminology. Similarly, the CW-category was introduced

just a couple of days back. Let go through them again.  



What are the objects in CW? Topological spaces which have an extra structure namely a CW-

complex structure. Remember that topological space itself is a set with an extra structure.

Now we have one more extra structure, namely the CW-structure. What are the morphisms?

cellular maps between CW compelxes.  Composite of cellular maps is cellular, and identity

map is always cellular. This is what we need to verify but that is already done. Similarly the

simplicial category in which morphisms are simplicial maps. Okay So we will discuss more

examples next time. Thank you.


