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Last time we started the study of relative homotopy groups, saw three different definitions of it,

and then we established one of the fundamental results, namely, homotopy exact sequence of a

topological pair. So, today we should give you one very important application of that, namely,

homotopy exact sequence of a fibration, okay.
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So, we recall that by a fibration we mean a certain type of a map of in topological spaces. Today

it is customary to denote such a map by  from  to ,  is called the total space,  is called the

base  space  and  the  map   has  homotopy lifting  property  with  respect  to  every  space.  The

homotopy lifting property, I just recall, means given a data here, namely, a homotopy  from say

from  to , into the base, and a lift  of ,  is a map from  into ,  restricted to

 is the initial state of the homotopy, there must be a lift of this entire homotopy .  

Lift of   means you have a map  such that   is   and  restricted to   is  . Here,  

denotes the inclusion map of  into , okay? Think of this as a copy of  here,  is

the initial value of  . Then the conclusion is that there is a map  such that   is   and  

restricted to  is little . That is the homotopy lifting property. If this is true for every space

 and every map  from  to , then  is called a fibration.
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So, the proposition is  that  any  fibration   from the triple   to   induces

isomorphism of all homotopy groups. Here, it is customary to denote the inverse image under 

of the single point   by  , where   is the base point in  . So, this is our basic result, very

useful in the in the study of fibrations. Using this result we will get a very useful statement when

we combine it with the homotopy exact sequence of the pair. Let us first prove this statement.
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So, there are 2 parts here. One is that   is surjective and the other one is   is injective. To

prove that  is surjective. Let us use the definition (6), namely, the simplest definition for the



homotopy groups. So, start with an element  of  The element  is represented by a

map  from ( , boundary of ) to .

Which means that  is a continuous function from  to  and takes the entire of the boundary to

a single point. This is the simplest definition of the -th homotopy group. Now you can think of

this  as a homotopy on  equal to , okay? So take this as  in this picture here, okay? And

then we try to apply this homotopy lifting property. We must have a map from  to ,

but that is very easy here, because this particular   namely, the given  takes the entire of the

boundary to a single point.

So, I can take  from , which is a part of the boundary to be the constant function

mapping to a single point here in  , viz,  . Then   will be the constant   here. So this

diagram will be commutative. Therefore I can apply the conclusion to this situation and get a

map  here that is the first conclusion that we get, okay. So, taking  and thinking of 

as  a  homotopy  and   to  be  the  constant  function  to  ,  and  applying  the  homotopy  lifting

property,  we  get  a  map   from   to   such  that  such  that  the  diagram  on  the  right  is

commutaive. That just means what   restricted to   is the constant function  , by our

choice and  is  . That the meaning that   is a lift of . On the boundary,   is a constant

map point that means  of the boundary is the single point . That means this entire thing is

contained in the fiber .  of boundary of ,  is contained in . 

Therefore  represents an element of . That is the definition (6) that we are using.

Elements of  are represented by maps from  to  such that the boundary of  goes

into  and of course, the base point is going to . Therefore,  okay? Because 

is . This proves that  is the surjective.
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Now we will prove injectivity. What is the meaning of injectivity? Start with the element   in

 this time, okay, and a relative homotopy of   to the constant function, okay,

when you pass into the base space  . So, let   be a homotopy,   from ( ,  boundary of

) to  such that this  restricted to  is  and ( )= ? It just means that

 is null homotopic in , i.e.,  is the trivial element. We want to show that  itself is

the trivial element in , right.

So that means we have to find a base point preserving, relative homotopy here, namely,  from (

, boundary of , ) to  okay, such that  restricted to  is  and  should take

 to , okay? This is what we have to find. Here we have taken  in  okay

as the base point for .

It is clear that if we apply homotopy lifting property of  to directly to , resulting lift will not

satisfy this requirement, namely, all of the set base point cross  may not just go to the same base

point  under the lifted function. That will not be guaranteed because all that we get is  is 

and so it will say that this is contained in the set capital . That is all, where as we want it to be

actually just a single point  That will not happen. That is an important point here. 

So, in order to overcome that, we have to work a little harder. The key is in demanding that 

satisfies even more stringent conditions and then appeal to a trick, okay? First, if you just try to



control this  only on , that seems to be more difficult. So, demand that  satisfies a more

stringent condition. So what is that? Let me tell you.
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So, first make a notation,  equal to one of the -face of , to be specific, let 

Then  is an -face of . Now let  be the union of all other -faces of , okay? Note that

this  contains , a pair of opposite -faces. There are many other -faces of  in

, okay, but we pay special attention to these two. Also  contains the line segment 

So, if I control the map  on  , automatically, it will be controlled on these subsets. In any

case, I want the lift to be such that on  , it is  , on  , it is the constant function  ,

right, and on this line segment also I want it to be a constant function . So, I make this single

demand that, in addition to the condition (8) viz., these two conditions,  is the singleton ,

where  is any of the -faces of , other than ,  and . Of course the last

one is not in .  consists of all -faces other than .

So, can we get such an  is a question, by using homotopy lifting property. Directly, it does not

give you that. So we have to appeal to a trick here, okay? So what is that trick? I will tell you

okay.
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Define  from  to  by taking  equal to  on  and the constant function  on ,

and also on all other -faces , just like what we want  to be. I want to find  from  to 

to  be   on  ,  and   is  .  Since   of  boundary  of  ,  by  the  very  choice  of  this

homotopy, is singleton , this demand is consistent. 

It will then follow that (boundary of ) is inside . That is also a requirement. However,

that comes freely for us. That will complete the proof okay? So, how to apply homotopy lifting

property for this  instead of just ? That is the trick.
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We appeal to the fact that there is a homeomorphism tau from  to . Remember  is equal to

, one of the faces of . This homeomorphism is given by the radial projection from the

point   belonging to , okay? This radial projection a retraction of 

onto  . It is the identity map on the common boundary, boundary of   and boundary of  ,

okay. So, let us look at how this is got in the case of when . Look at the picture. 
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So, this is my picture of . Here,  is drawn for . This red thing is  and this is

point is  . You project points of  radially means each point 

goes to the unique point  , shown by this blue color, which lies on the extended line

through  and . Why is  a homeomorphism? Why this is a bijection? All this is very clear. First

of all,   is a projection so there is no problem with continuity. 

So, take a point in   here okay? I am going to define   now. Take a point   here. How to

determine  the  point  ?  Write  down the  line  segment   in  the  parametric  form viz.,

 and put the first coordinate equal to   to determine the value of  . We

want a point on  so put that condition. Immediately it gives you a unique solution. That is

your  so that . This is just an elementary linear algebra problem. Okay?

Since  you can write  down the formula for  tau inverse,  that  completes the claim that   is  a

homeomorphism. Obviously, when you take the boundary point here or here, okay, namely  



cross boundary of  is the boundary of this one okay, there your original point and its projection

coincide. So,   is identity on the boundary of  , okay? Now take   from boundary of   to

itself, to be the map such that   is  on  and  on . On the intersection both are identity

maps and so, they patch up to define a homeomorphism  from boundary of  to itself. 

Finally, take the affine linear transformation  from  to itself which merely interchanges the

first  coordinate  and  -th  coordinate  and  followed  by  the  reflection  in  .  The

formula is: . The first coordinate has come to

last  coordinate  that  is  just  a  permutation,  and  then  the  reflection  which  is  an  affine  linear

isomorphism. Obviously,  goes to itself under  and its boundary goes to the boundary. 

Therefore I can take  restricted to boundary of  and compose it with  and call it , so that

I get a map from boundary of  which is a homeomorphism. After that you can extend it to a

homeomorphism  of the entire  to itself, by taking the cone construction.

So, this homeomprhism is , an extension of , okay? This homeomorphism has the following

properties, which justifies why we have done all this: 

On , both  and   are homeomorphisms onto . Now trick is revealed. You wanted to

control the map on , but now this can be done by controlling it on a single face , which

is done, by the very definition of homotopy lifting property. So now, go back to our homotopy

lifting diagram.
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I have this map   which is a fibration here, I have an   here, I want capital   here such that

restricted to  it is  and  is . I cannot apply the homotopy lifting property directly here,

because this  is not just . So, what I do? I take  and come to the larger rectangle

here. At the bottom, on , I take  and at the top I take  restricted to , okay.

You have to check that  is equal to  restricted to , which is obvious. 

Therefore the HLP gives you this map . Now all that I do is start here, come to here via 

and follow it by , i.e., take capital  equal to , okay? So that will give you whatever 

we wanted. Okay?
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Now, let us come to the final statement of the theorem 1.20. The proof is very easy. Take any

fibration, take a base point   in the top space. And then the base point in   must be taken

. And let . This is the convention. Then we have a long exact sequence of

homotopy groups and homomorphisms,   to   as in the previuos theorem but

then suddenly, instead of a relative homotopy here, we have  and so on.... 

The homomorphisms are  and  instead of  and then instead of the old boundary operator 

,  a  new one   to   so on.  Finally,  it  will  end up with   to   to  .

Remember the last entries are not groups but just pointed sets, the set of path components of 

and  respectively and the last function is the inclusion induced map, okay? 

The proof is now very clear. In the long exact sequence of relative homotopy groups of the pair

 I  replace  all   by   I  need  to  replace  the  two  adjacent

homomorphisms  also  properly.  The  proposition  says  that  the  relative  homotopy  group  is

isomorphic to  under . So, I am going to take , which I denote again by ,

because 
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Similarly, I define the homomorphism  to be  followed by . That is all. That is why we use

a different notation here. Automatically, this sequence will now be an exact sequence. Coming



from here to here and come down here go that way and that is the precise statement of this okay.

So, that completes the proof of the big theorem okay homotopy exact sequence of a fibration.
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Of course it has several applications. We will only mention a few of them which are immediate

consequences obtained without much trouble. You should be able to get them easily.

One of them is that a covering projection is always a fibration. It is a very peculiar fibration, a

very, very important fibration. It has more properties than an ordinary fibration. In particular, the

fiber of a covering projection is a discrete space. When  is a discrete space, what happens to its

homotopy groups?  will correspond to the set  itself, and all other higher homotopy groups

, etc., all of them are all . So, if you use that hypothesis here in the long exact sequence,

this  will keep appearing at every third term and hence this  will be an isomorphism for

all . When , you have a problem because  is not a singleton in general. 

 

So, when , it will not work. But for , we know exactly what happens. This we have

studied under covering projection theory.  
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So, here is a case wherein we have even much better looking result. Consider the action of  on

, by thinking of   as the space of a units in  , product of copies of the complex

numbers  taken   times.  So,   is  the space  of  unit  complex numbers.  The action is  just  by

coordinatewise multiplication. The quotient space  , as we know, is the complex projective

space of dimension . Then the quotient map  from  to  is a fibration. That is not very

easy to see though. We cannot prove that one here.  It  is a standard result  in differential and

algebraic topology. 

 

A more general standard result is the following: If we have a compact Lie group acting on a

smooth compact manifold then the quotient is a fibration okay? This result is the richest source

of fibrations, by the way, but in this course, we cannot cover that one, okay? So, this   from

 to  is a fibration and it has a name, Hopf fibration, because for the case , viz., 

from  to , it was an important contribution by H. Hopf.

Here,   is  an  isomorphism for  .  In  the  general  case,  it  is  so  for  .  That  is

 is   for  .  And   is isomorphic to  , okay? And

hence not trivial. Non triviality of this one can be seen in many ways. The way that we have seen

it is, namely, the identity map of a sphere cannot be null homotopic, okay? This fact was proved

while proving Brouwer's fixed point theorem,  okay? 



Apply this here with   and  , the fiber  .  And we know that the

homotopy groups  are trivial for . Okay? So, we have isomorphisms for . For ,

there will be a problem because  is nontrivial. It is infinite cyclic. 
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So that is what I am telling you. I repeated.   is not trivial is a fact that we have proved

while proving Brouwer's fixed point theorem, namely, by proving that the identity map itself is

not null  homotopic, okay? Indeed what happens is just like   is infinite cyclic, one can

prove that  is also infinite cyclic. Actually that result goes under the name Hopf's theorem,

okay? Hopf's a degree theorem. But this is not a part of this course okay? Usually this result is

proved in differential topology, okay?
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So, one more remark. The proof that  is not trivial was a great discovery by Hopf when he

did it, in his time, okay? It is a landmark result even today. So, he observed that the fibers of 

from  to , they are all copies of  and they are inter-linked, in a very nice way, namely in a

simple way like this and that is precisely what we call nowadays the Hopf link. Okay? So, this is

a non trivial link that is easy to see. But fom this Hopf concludes that the map  itself is not null

homotopic. That part, I cannot explain here. Okay?
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So, here are a few exercises which you can try on your own. Trying to solve exercises is a part of

the learning process, okay? Trying itself is more important than just knowing the solutions okay?

So keep doing exercises, in the hope that you learn more. Thank you.


