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Continuing with the topic introduced last time, viz., the study of higher homotopy groups let

us now introduce the so called relative homotopy groups. This module 16 has been divided

into 2 parts because it is a lengthy one. The idea is that I would like to take you a little deeper

here to the extent that further study of homotopy groups is not possible within the scope of

this course, because we need to use cohomology theory etc. So, at that level, I am going to

leave you.  Let us do a little more of higher homotopy groups here.
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Begin with a topological pair   with a base point   belonging to  . Often I may not

write down or mention the base point. But it is always there in the back of once mind, okay?

Whenever you are discussing homotopy groups  etc. Okay? 

Let us consider the following subspace of all paths in , namely continuous functions from

the closed interval  to , which is the function space. Remember that means that it is taken

with the compact open topology. So now, I am writing a subspace which I am going to

denote by  . (This capital   is usually used to denote the spae of all loops in a

given space, in algebraic topology. Here we are using it in slightly general context. 

So,  is the set of all  in , (that means  is a map from  to ) with the starting

point of  being  and the end point of  belonging to .  is a subset of , okay? So, that

is  with the subspace topology from .

For , we will have this notation , (which is a shorter notation for ,

okay,  a  lazy  notation,  the  base  point  is  always  there  but  not  mentioned),  for  the  set

, with a specific base point being the constant function at  . For  

this will be just a based set. 
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But remember that for  greater than or equal to , etc., have the standard group struc-

ture. So, that is just the definition of relative homotopy groups. So, for  is a

group which is abelian if . This is what we have seen last time. These are called relative

homotopy groups of the pointed pair . 



Of course, if the base point  is changed, then you know how to relate the different groups

that arise. There may be some relation but the groups will be different. That is why the base

point has to be mentioned.
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For  in general, this is not a group. You treat it as a set but a special kind of set, a set

with a base point, the base point of the set being the constant path. okay? It is a set with a

base point. The same constant loop at   becomes the identity element of the group, when

, okay? Now we have a theorem.

So, for  ,  there are canonical bijections of the homotopy sets   with two

other type of sets of homotopy classes of triples. The first one has the domain triple equal to

( , boundary of  ,  ),  where   and the codomain is the triple  .

Then the homotopies are defined on the triple ( , boundary of , ) , which is nothing but (

,  boundary of ,  ). find cross  for comma . In the second type, we

have taken only the domain triple slightly different. Okay? 

So,  according  to  your  need,  you  may  use  any  one  of  these  three  descriptions.  In  our

definition, automatically, these sets get their group structure. In these two other descriptions,

you not have any obvious way to define group structures but we take the group structure

which makes the canonical bijections into an isomorphisms. The latter two descriptions have

their own advantage.  



I  will  now handle  the  second type.  Here  in  the domain  triple  the  third entry  something

different,  the  rest  of  the  entries  are  as  in  the  first  type.  Instead  of  just  a  single  point

, I am taking  union boundary of . All of it is a subset of the

boundary of , and includes the point . So, we take maps omega from  to , which take

this entire set into the single point  and of course, take the boundary of  into . And I will

do of course, only sticks such maps and that homotopy case these  are equivalent and both of

them are equivalent to , that is the definition. Thus theorem 1.18 gives you 

equivalent ways of looking at , okay?
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Let us prove this one. So let us have a temporary notation for this third set,  

union the boundary of . We know that the inclusion map from  to the boundary of

 is a cofibration, because  is subcomplex. Remember that boundary of  is actually equal

to . That is the full boundary. What is missing in  is only the interior of the

top face.

You take any -cube, okay? Fix one of the faces and look at the union of all the other faces.

That is what is happening here.  And then the inclusion map into the entire boundary is a

cofibration. We have proved this in part I actually. Not only that, this set is contractible also,

which is easier to see. Under a homeomorphism to -sphere, this set corresponds to half

the sphere. That is one way to see that it is contractible. Consider the quotient map  from

boundary  to . 



Here you are `collapsing'   to a point. All the points of   are identified with each other to

give a single class. Rest of the point of boundary of  are undisturbed. So, that is what we

mean `collapsing ' to a single point. From theorem 0.6, which you can have from the notes

of part I course. Anyway,  I will just you this reference here, show you this statement.  
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So, let   to   be a cofibration,   is  contractible  then the quotient  map   to   is  a

homotopy equivalence, okay? So, this was a theorem there. Alright? Let us come back to the

present. Now this  is a homotopy equivalence from that theorem, so, we let  from boundary

 to the boundary of  be a homotopy inverse of , okay? So, that means that  and

 are homotopy equivalent to the identity maps of the respective spaces.

By composing with a `rotation' of boundary of , (for this, you think of boundary of  as the

sphere   and then you can have a rotation which takes any point to any other point and

use the fact that rotations of   are homotopic to the identity map), you can assume that

) is the point   is any homotopy inverse of , you do not know where it maps the point

. If it is equal to , then fine. 

Otherwise you just compose with an appropriate rotation and assume that  itself maps 

to  .  Now take  put  ,  okay?  Then   is  a  map from boundary  of   to  itself,  is

homotopic identity map and maps the entire of  to the single point . Understand?



Now,  whenever  you  have  a  map  from   to  ,  you  can  extend  it,  by  the  cone

construction, to a map  to . That is what we do now. Let  from  to  be the extension

of  obtained by taking the cone construction. 

Automatically,  will be also a homotopy equivalence, Indeed it is homotopic to the identity

map of  . Okay? This is a bit stronger than saying that it is a homotopy equivalence. Of

course,  also sends the entire of  to a single point. 

Now, you might have appreciated why I am doing all this. Upto homotopy, the entire  can

be treated as single point. Of course every conclusion that follows is true up to homotopy.
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Look at the map induced by  from the space of all maps from the triple ( , boundary of ,

) to  . Suppose you have a map here into  , okay? Then by composing

with  , you will get a map from ( , boundary of  ,  ), because this whole   goes into a

single point under  . Okay? So   going to   is the function  ,  from the first set to

second set. Both are function spaces and  is continuous. 

Upon passing to homotopy classes, the corresponding function induced by  is a bijection. 

But now under the exponential correspondence the latter space is actually equal to the this

one,  viz,  the  space  of  all  maps from the  pair  ( ,  boundary  of  ,  )  to  .

Remember that  consists of all paths in  starting at  and with endpoint in ,

right?  Look  at  a  function   from  ( ,  boundary  of  ,  )  into   fix  a  point



 and  take  the  restriction  of   to  .  That  will  give  you  an  element  of

, under the exponential correspondence. Other set theoretic conditions are easy to

check.  That is not a problem. Boundary of  goes inside  okay? More important is that the

entire is that the entire of  goes to the constant map at , okay? 

So, this implies assertion (7)  Okay? Now, (6) follows from the previous observation that eta

hat star induces bijection of homotopy classes. Finally, the functoriality of these bijections

follows from the fact that everything is happening in the domain and has nothing to do with

the internal structure of the topological triple  . The actual  meaning of this is as

follows. 

Suppose  you  have  another  triple  ,  okay?  And  a  map   from  here  to  here.

Composing   with  that  map alpha  from  ,  to   will  give  you  a  function

 on  the  one  hand  and  another  function  ,  boundary

 to , boundary of , The assertion is that the entire diagram

commutes:   is  equal  to   The  is  a  simple  consequence  of  associativity  of

compositions of maps.

Anyway, functoriality will be explained completely when you study categories and functors

in the next chapter.  Okay? After that you may come back here and see whether it makes

better sense for you. Okay?
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So, (6) gives an alternative definition of  which is easy to remember and useful.

However,  with this  definition,  defining the group structure  will  be somewhat difficult  as

compared to the first definition 1.21 wherein the group structures on   are automatically

defined right? 
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Now, take a special case when  is the singleton . It follows that from this definition (6)

now mentioning single point  is redundant okay? Since the entire boundary is going to to

the single point  .  Therefore,  it  is  same thing as   which is  just  ,

okay? So, that is the So,  

We can now state and prove one of the most fundamental results in the homotopy theory. 
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Given a pointed topological  pair   with a base point,  we shall use the notation   to

denote the inclusion map   into   of pointed topological  spaces and   for the

inclusion map from   into  .  These  map,  in  turn,  induces  respectively

inclusion maps when you pass on to the path spaces,   into   and  

into  We shall denote them also by  and  respectively and hope there will not be

any confusion. 

For instance,  consists of paths in  starting at , right? 

So, you compose with , to get a path in , again starting at  In other words, a path in 

can be thought of as a path in  . That is also an inclusion map of   into 

Similarly each element of  can be thought of a member of , okay? Since

 is a point inside  okay? So, these are the inclusion maps which we shall denote again by 

and . Right? 
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Consider the evaluation map  from  to . An element of  is a map . If it is

in , then the starting point is , right? But you can take its value at , the end point,

that becomes important for us. So, look at the end-point map  from  to  given by

Now,  given   from   to  ,  we have   of   is  a  subset  of  ,  by the

definition  of  .  Therefore,  we  have  a  homomorphism   from   to  ,

defined by  of the class of  equal to the class of . Okay? 



We are writing simplified notation here. This   is classical notation. So, the definition of

boundary of   is  nothing but the class of  ,  okay? Going through the definition (6)

carefully, if you view  as a map from ( , boundary of ,  ) to , it is clear that

 is nothing but just the class of  restricted to boundary of .
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Now the statement. For any pointed topological pair  ,  there exists a long exact

sequence of groups and homomorphism induced by this topological pair, using the maps  

and  and . All these three maps induce homomoephism at each stage , and  they will form

a chain (possibly an infinite one) of homotopy groups and homomorphisms,  and , in

that order:  from  to , then  to  and then  to  and so on. I

have not mentioned the base point, which is always .

For , these are all groups and homomorphisms. What is the meaning of exact sequence?

Any two consecutive composition is the trivial homomorphism. That is a part of the meaning,

but it is stronger than that, viz,  kernel of  is equal to image of , kernel of  is equal to

image of  and kernel of  is equal to image of . This should happen at every stage. It

goes on an as the number  keeps coming down, down  and so on. 

More precisely, the image of   is equal to the set of all classes which are mapped to the

constant function by  and similarly the image of  is precisely equal to the set of all classes

which are mapped to to the constant function by . 
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So, let  us prove this theorem. Obviously,  the proof will  be divided into 3 parts,  namely,

exactness here, exactness here and exactness here, Okay? So, one by one. The proof is broken

into 3 steps.

The first step is to show that kernel of  is equal to image of . Kernel of  here, the 

will come from here this one  . Okay? So, start  with an element   which is by

definition, equal to , represented by a map  from  to . Suppose

 for some  from  to , you are taking an element here in the image of

.  I  have to show that   is  null  homotopic.  That  will  prove that  the image of   is

contained in the kernel of . Okay?  

So, I have picked up this  such that  is . Just define a homotopy  from  to

, by the formula, .

(There is an error here in the slide). 

Here   is  in   and   and   are  in  .  Therefore,   is  in   and  hence   mapsto

 is  a  path  in   starting  at  .  Therefore,   is  an  element  of

.  Also,  for   the  constant  path  at  .  For  ,

 which can be viewed as the   and hence van also be viewed as

 That proves that  is null homotopic. 
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So, one part of Step I is over. Let us go ahead to the second part, the converse part. Given

, suppose  is the trivial element in . This gives us a homotopy

 from   to   of   with  the  constant  loop  at  .  Now,  I  take   from

 to  given by (we are reversing the roles of what we did the previous step but a

little carefully) equal to , okay?

 and  are general elements of  and hence  is a convex combination of  and .

And hence is an element of . So the RHS makes sense. We have to see that  is a homotopy

of   with a map   taking values inside  , viz.,   which is

clearly in . When , we get  by the choice of . 
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So, coming to Step II, we have to show that kernel of   is equal to image of  , okay? So

now, we are coming here this part kernel here is equal to image of . Elements are inside of

,  okay?  If   is   for  some   from   to  ,  okay?  Then

. But by definition of ,  is equal to . So, one way was very

easy.

Now, conversely suppose   is the trivial element, for some  from  to  .

This means that we have a null homotopy of , okay? You see,  may not be the

constant function but it is  homotopic to the constant function at  .  That is what we get,

okay? A relative homotopy. That is the meaning of that something is a trivial element in this

group okay? So, what we have a null homotopy of , okay? Let  be such a homotopy.

For  each  fixed  ,  let  us  define  a  path   from   to  ,  okay?  By  the  formula,

. 

Then   is a path in   starting from   to   So, you

know  may not be exactly  all the time, right? This is  is homotopic to constant

function at . So,  is some point in , and from there it is joined to the point . That

is what the path  is doing. 

Then omega x is a path from starting from E 1 of alpha x to alpha x of 1 which x naught

inside A so, you know alpha of x is not exactly all the time x naught. This is alpha x of 1 by

definition and it is homotopic to constant function to x naught you get each of them will be an

endpoint to be just x naught. So, alpha x 1 is some point and from there and joining it to x

naught that is the meaning of this omega x what is that is what this one. Now put omega x t of

s equal to this omega x ts so, I am defining another path here temper path. 

Now for each , I can define another path 
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Next, define  from  to  by as follows:  equal to the composite of two

paths; first trace the path , remember this is a path in  from  to  its end point ,

from that point now trace the path  only upto . When , clearly this path will be a

loop and hence is an element of  So, take this path okay? I want to say that they are all

loop. Also, when , we get  and for , we get an element of  So,  will be

the required homotopy. 

(Editors note) Here is the precise formula for , which is given wrongly in the slides. 

For  each  ,  define   equal  to   in  the  interval

2 and equal to , in the interval . We leave

checking the details that this  is the correct homotopy to you as an exercise.   
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Now the third step is to prove that kernel of  is equal to image of . This last thing here.

Now the elements are inside . Okay? Assume that  is in the image of .

(Then I have to show that  is the trivial element, i.e., homotopic to the constant function,

right?) This implies that there is a map  from  to  such that  is , by the

definition of , okay?

Putting , (remember  is a path in , so,  is an element of . We

have   is  equal  to   and   is  .  Therefore   is  null

homotopic in , okay? So, that means  is in the kernel of , where  is the inclusion of 

to , okay? So, one way we have proved.  

Conversely, suppose you have a homotopy   from   to   of the constant loop at  

with the map , i.e.,  is null homotopic in . Then look at  from  to  given by

, the same homotopy. Then,   is equal to  

because by definition, , where  is evaluation at the end point.  So,  is an

element in  such that . That proves  is in the image of .  

So, to sum up, steps I and III were easier, step II was somewhat difficult. Though, in nature,

all the three steps similar, the proof are slightly different. That is why I taken pain to write

down all these proofs, okay? So, go through them carefully. It is not that if you prove one of

them then you can leave others because they are similar. That is not the case here okay. So,

go through them carefully. That is the only way to understand the various interrelations here

and the definitions and so on. Okay? So we will take a rest here and start the second part of

the model 16 A little later. Thank you.


