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Carrying on with the proof of cellular approximation theorem, so far, we have proved that for the

case when both domain and co domain have just one cell. So I will recall that lemma and then

immediately go one step ahead. 
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So let us see what was the lemma? The lemma was that given any map from  which is

like a relative CW-complex with single cell of dimension  , right? To   which is also a

relative CW complex with a single cell of dimension , can be homotoped to another map

which takes values inside ; it can be pushed inside . This is the lemma. Now we want to do

the same thing taking  to be any general CW complex, and keeping the domain the same.

So this is the first corollary here. 
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Let  be a relative CW complex. Then for every map  from  to , (I

am replacing  with the -skeleton of ), there is homotopy  from  to  such



that , to begin with,  is also  on the boundary  and  will

be in the -th skeleton  of .   

If  is already of low dimension than , there is nothing to prove here. The point is that I am

implicitly assuming that there are cells of higher dimension in . Moreover if  is already

taking value inside , then also there is nothing to prove. So it is implicitly assumed that  

maps some points into cells of dimension biggen than . But this time there may be several such

cells here as compared to the earlier lemma. How to handle this case?  
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The very first thing is to note that  is a compact set and so it will meet only finitely open

cells of  , which we have seen. Among all these finitely many cells, pick up one cell of

largest dimension. And if this largest dimension is itself less than equal to  then there is nothing

to prove. So, let us say assume that this dimension is bigger than . Fix up one such cell among

all finitely many possibilities and denote it by . We have assumed that alpha of  intersects

the interior of .

Now what do I do? It follows that  already takes values inside the -th skeleton of . So,  I

am concentrating my attention to just this one -cells . 
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In the lemma, I take  to be the union of  and the rest of the -cells, and take  to be the

space obtained by attaching   to this  . (Here there is a small error in the slide). Then the

lemma gives us a homotopy of  to a map  relative to , so that  takes value inside

. Therefore the number of open -cells intersecting the image of  is reduced at least by one.

In finitely many steps you will actually get rid of all the -dimensional cells and we may now

assume that  takes values inside .

Repeating this process finitely many times, we would have homotoped  to a map which takes

values inside .

So  the  cellular  approximation  theorem for  the  case,  when the  domain  has  only  one  cell  is
completed. Now we can generalize this to the case when  has finitely many cells, by going
up with respect to the dimension of cells in . But the case of infinitely many cells in the
domain is tricky. We got it very easily for the codomain. The presence of infinitely many cells in
the  codomain  did  not  matter  at  all  because,  each  time  you have  a  compact  thing  which  is
contained in the union of finitely many cells. However, more care is needed when the domain
has infinitely many cells.  

But for this also, we have a readymade technique, when we proved local contractability of CW-

complexes. We showed how to compose infinitely many homotopies. That is what we are going

to use now. Added to that we need one more technical result also. 
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Now inductively, we shall construct a family of homotopies,  from  to  such

that:

(i) the starting point,  and , for .

Remember  was a subcomplex on which  is already cellular and so we do not want to disturb

on . So, I may not mention this again and again, but this is to be assumed all the time that we

were not going to disturb  on this part at all. We are going to change the map by a homotopy

only on cells which are not in . 

  

(ii)  Next thing is that   for all  . Now this is going to help us in

taking the composition or better called concatenation of homotopies, just like composition of

paths. So starting point of  is equal to in the end point of  .

 

(iii) Let us have this property, which is needed while passing from finite dimension to infinite

dimension. Namely, ,  for all  and for all . 

 

(iv)  Finally the end point map  must be cellular on . That means it takes the -th

skeleton of   into the  -th skeleton of  .  We do not know whether it  is  cellular  on higher

dimensional skeletons nor we need that.

So this is the inductive step. Having constructed , you must be able to construct  and then

 and so on. So you may treat this itself as a proposition. 
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Once we have done this, first let us see how we can complete the construction of . That is an

immediate consequence of the old technique, namely, concatenating various ’s, in one single

shot. (Remember what we did in the proof of lemma 1.15. It is similar here except that  and 

are interchanged. That is the only difference. Deliberately I have done this so that you will now

have better grip on this technique.)

So for each , select the unique  such that . Then put
 appropriately parameterized in this interval to get . (So you are concatenating  with
 for all .) But so far  is defined only on . Finally take  where

 belongs to . 

Because of (iii), it follows that  is also well defined, and will not depend on the choice of
m.   
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First of all, continuity of  on  follows from (ii). To see the continuity of  on ,

it is enough to check the continuity of  restricted  for each . But then this restriction

is equal to . Clearly,  for , and  for all . Moreover

 is clearly a cellular map. That will complete the proof of the theorem.  

We have to do this job of defining . So this we will do one by one. So first we have to define

 Since  points  of   are  not  to  be  disturbed,  we  begin  with  any  -cell  which  is  not  in

. (Essentially, we are working in the relative CW complex  and think of 

as obtained by attaching -cells to , and so on.) Choose a path  from  to some point in

. The entire CW-complex  okay is built up from  by attaching cells inductively, Therefore

every point in  can be joined by a path to some point in . This is elementary result that for

CW-complex,  the  number  of  path  connected  components  is  equal  to  the  number  of  path

connected components of . So you can join  first to a point in  and then it is easily

seen that you can this point at a point of . A path can be treated as a homotopy of a point

map.  We  put  all  these   together  and  define   to   by   if

 and   if  . Since   is discrete, it follows that   is

continuous. What is it for  This will be a point of . Therefore  subset of

. 

So far  is defined on  only. But I want this to be defined on the whole of . So
how do I do that? Here I use the property that for every sub complex of a CW complex the



inclusion map is a cofibration, i.e., it has the homotopy extension property. Just for your benefit I
will recall this HEP from part 1 of the course. 
(Refer Slide Time: 17:48)

The homotopy extension property involves this kind of commutative diagram of maps. Start with

 contained inside  ,  there  is  this   which  the inclusion map.  It  is  called  a  cofibration,  if

whenever you have the diagram of maps on the left side here, it should imply the existence of the

map  indicated by the dotted arrow on the right side so that the entire diagram is commutative.

Here  and  are totally arbitrary  should make the diagram commutative. This is much is the

data. The rest of the diagram is automatically given. Suppose this much is given, then there is

map  here which makes this entire diagram is commutative.  That means restricted to 

is equal to , i.e.,  is a homotopy of  and restricted to , it is equal to . That means 

extends the partial homotopy  of . So that is why this is called homotopy extension property.

If  is a subcomplex of a CW complex , this will be always true, which is we have proved in

theorem 1.14.  So I am going to use that property now. 
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Start with , which we have constructed on . Now I extend it to whole of , that

means there is  a  map   from   to   having the properties  lists  in  (i).  Automatically

 satisfies (iv) also. That is all at the stage . 

Now  you  assume  that  you  have  done  this  for  ,  viz.,  we  have  constructed   for

 so as to satisfy the properties (i) to (iv). First you get , using our corollary 1.5, cell

by cell, you get the extension on the whole of the -th skeleton, by patching up 's defined on

each -cell.  So I will repeat this part. 

Inductively suppose I have defined  with the property as specified in (i) to (iv). For each -

cell , okay, in , (remember we do not touch any -cells in  at all because  is 

and each  contains ), with characteristic map say  from  to 

, put  equal to  itself is defined on whole of . Remember that. So this

makes sense and now use that corollary to get a homotopy  on  to  such that the final

map takes value in  and it is identity on .
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You can now put all of them together to cover whole of . What is definition? Take any point

 here. If  is not in , then it will in the interior of some  for a unique . Then put

. So they will all patch up because they all agree with . Therefore, we 

have . Now as before, you extend , using the cofibration property, to a homotopy  on the 

whole of . 
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So inductive step is over. Therefore the proof of the theorem is over. 



Following this fundamental lemma 1.17, we will make a couple of definition and then mention

some very interesting results,  which can be  deduced by applying your mind and the results

proved so far. They will be your exercises. I will give them as assignments or exercises to you.

Think about them. I hope there won’t be any difficulty, now that I have prepared you well.  

So let me just introduce these definitions. 

Let   be a non negative integer. A topological pair  (with  non empty) is said to be -

connected if for each , every map from  to  is homotopic relative to

 to a map from  to . Note how the conclusion of the lemma has been converted into a

definition. With additional hypothesis as in the lemma such as   and so on, we have an

assertion there. 

If that assertion happens every time, then you call this pair -connected. Remember that
for every   this should happen. You do not know what   is. We have proved this
assertion for the case where  is got by attaching -cells for . So, I am making that
conclusion as a hypothesis in the definition of -connectedness. 

You have to have some convention for the case , viz.,  is a singleton space and  is

empty. In particular, if  consists of single point , that point is the base point and base point

and then instead of saying  is -connected, we say  is -connected.

 

Note that when we take a topological pair  , the subset   is never empty. When   is a

single point, then it is common practice not to mention that point specifically and just say  is -

connected.  Otherwise  we  mention the  pair   is  -connected.  The  condition  is  same of

course. 
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Next  I  want  to  introduce  the  concept  of  higher  homotopy  groups,  somewhat  similar  to  the

concept of fundamental  group. Some miracles happen here. The definitions are more or less

similar, but miracles happen here from dimension  to dimension  and so on  etc., I mean

the case  is quite different from the case . 
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So let  be an integer greater than or equal to . Instead of the round model for the discs, let us

work with the square models and consider two maps  from ( , boundary of ) to a pointed

space . If , these maps represent some loops in  based at , right? Remember that

a path with both end points equal is a loop. So how did we compose loops? Exactly same way I

want to do in the general case also. 



Define  from  to  as follows: For , if both  and  are less than equal to , take

; if both  are bigger that or equal to , take  equal to

; otherwise put .

I told the definition for the case . You do the same thing for all  as well. Note that if 

this definition coincides with the loop composition of  with . Take this definition and just like

in the case of fundamental group verify that this operation is homotopy associative, it has a  -

sided homotopy identity, namely, the constant map, etc. And one more thing, namely what will

be the homotopy inverse of any map ? You just try , viz., just reverse

one of the coordinates. That will be the homotopy inverse. So the set of homotopy classes of

maps from ( , boundary of ) to  become a group. That group is going to be called the

-homotopy group of  with base point , and denoted by . So that is the definition

of higher homotopy groups.
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We  may  denote  the  homotopy  inverse  of   by   which  is  given  by

, just one of the coordinates say,  is replaced by 

. Verify that   is homotopic to the constant map relative to the boundary of  . So the

group obtained this way, is denoted by  and is called the -th homotopy group of . 
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So one more definition: a map   from   to   is called an  -equivalence (just like the term

homotopy equivalence but this one depends upon ) if it induces a bijection of path components

of   and   and on each point   in  , the induced homomorphism from   homotopy group

 which  you have  defined  just  now, to   must  be an  isomorphism for  all

 and for  it must be surjective, an epimorphism. Such a map is called an -

equivalence. If  is an -equivalence for every , then we call it a weak homotopy equivalence. 

The idea is this. It  is very easy to see that if   is a homotopy equivalence then it is a weak

homotopy equivalence. So, a weak homotopy equivalence is very close to being a homotopy

equivalence.  There is  a big theorem known as Whitehead's theorem which says that for CW

complexes  and , a weak homotopy equivalence is actually a homotopy equivalence. 

So whatever I have stated so far canbe given as an exercise to you. It is not just one step exercise,

but a number of short exercises, all of them you can solve one by one. So that is what I feel that

if you have understood various points of whatever has been taught to you so far, you will be able

to do these exercises. Such preparation I have done for you. Thank you.


