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Welcome to  module  14  today  we  can  study  what  is  called  a  cellular  map.  The  subject  of

mathematics is such that object of study is not completed unless you study morphisms between

them, the relations between them. For instance, if we are studying vector spaces, we have to

study  linear  maps  between  them.  If  we  are  studying  groups  then  we  have  to  study

homomorphisms between them. In the overall set-up of topological spaces we study continuous

functions  between  them.  But  when  topological  spaces  have  extra  structures  like  simplicial

complexes you study simplicial maps between them. So here is the case wherein we have to

study CW-complexes. So here we would like to introduce a notion of what is called `cellular

map'  between  CW-complexes.  These  are  the  appropriate  class  of  functions  between  CW-

complexes.  The  most  important  property  of  cellular  maps  stems  from  the  fact  that  every

continuous map between two CW complexes can be approximated by a cellular map. So this

result goes under the name cellular approximation theorem. And this theorem is part and parcel

of the algebraic-topology-tool-kit. We shall indicate a couple of applications also in this course.
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So here is the definition. Take two relative CW complexes  and  and a function from

 to . We assume that the function is already continuous okay? And then we say  is

cellular if the -th skeleton of  goes inside the -th skeleton of  for every , under the

map . Now you may recall what is the -th skeleton of a relative CW complex  is.  

It is the union of  along with all the open cell in , of dimensions less than or equal to .
Note that by definition, a function of the topological pairs  to , is a function from 
to  such that  is taken inside  by the function. 
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Now here  is  an  example.  Let   and   be  simplicial  complexes  and  phi  from   to   is  a

simplicial map. Then if you look at mod   and mod   as CW complexes coming out of the

simplicial complex structures, then the associated map mod phi from mod  to mod  will be a

cellular map. -skeleton of mod  will go inside the -skeleton of mod , for every . That is

very easy to see. 

The cellular approximation theorem says the following. Take any continuous function from one

relative CW complex to another, viz.,  to .  Suppose  is a sub-complex of

, on which  is already cellular. Then there exists a cellular map  to  such

that this  is identically  on  and  is homotopic to  relative to .

So  starting  with  an  arbitrary  continuous  function   from   to   of  relative  CW

complexes, you can replace it by a cellular map up to a relative homotopy. That is the statement

okay? And moreover if this  is already cellular on a given subcomplex, there you do not have to

change  it.  That  is  a  strong  statement.  So  wherever  it  is  already  a  cellular  map,  the  entire

homotopy keeps that part fixed. So this is the statement of the theorem, which you may call a

controlled homotopy theorem. Already on  it is cellular, so there you do not want to change

the function.
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The first  step is  the  following  lemma.  That  itself  takes  some time  to  prove.  After  that  the

remaining proof of the theorem will be simpler.



 So, let  from  to  be a map, where  itself is got by attaching a single cell 

to  .  In  other  words,   is  an  open  -cell  here.  If  further,  ,  then  there  exists  a

homotopy   on   to   such that   for all   is   for all

 and for all  between  and , and finally , the end map, takes values inside 

for all . 

So, if the cell attached in the codomain is of higher dimension than the domain here, namely,

, then any map like this can be completely pushed inside  by a relative homotopy. That

is the way to remember this lemma. So step by step we can do this in the general case also. But

you will  have to use this lemma which concentrates  on one single cells  on both sides,  with

. 

The given map may hit the interior of  and may not be just inside . You do not want that for

cellularity. So, we want to  to go inside . So that is possible after a homotopy is the gist of this

lemma.
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So let us start doing this one. Suppose first, that the image of  misses a point  in the interior of

 i.e., the image of  is not covering the whole of the interior of . (In general, this may not

be true, we are only assuming it, temporarily). Recall that there is a strong deformation retraction

: from  to  , i.e., the entire thing outside   which is a part of interior of   can be

pushed back into  by a strong deformation retraction. This retraction is given by the standard



retraction of  to the boundary of , that is . Since the boundary of  is mapped

into   by the attaching  map,  so from this  standard  deformation retraction  you get  a  strong

deformation retraction of  to . 

Now if  misses the point , namely, the image of  is contained in , it follows that  is

homotopic to  . You see,  image of   is  contained here  and therefore,   make sense,

otherwise I would do not be able to take this composite. And  being homotopic to identity being

a strong deformation retraction,  is homotopic to  relative to .

Therefore it is enough to prove that there is a homotopy  of  to a map  relative to  such

that the image of  misses a point in the interior of . Once the image misses a point, then I

can take this homotopy. So, first we observe that if image  miss a point then the lemma is over.

So now what we want to do is to establish that there is such a possibility that we can homotope

the given map into another map   which has this property,  namely, atleast  one point in the

interior of  is not in the image of . So that is the strategy alright? 
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So now instead of using the round disk 's, we would like to use the square or cubic models,

namely,  equal to , for all k. So put  the closed interval  . First of all we fix a

homeomorphism from  to  for each . We can and shall assume that the characteristic map



of the -cell  in  is from , instead of , to . And similarly, we assume that  is a map

from ( ,  boundary of ) to , instead of from  

Recall the lattice structure that we have introduced in example 1.4, I am just recalling it here, so

we do not need to go back to the look slides. This is inside  denotes all those points  of

 with the -th coordinate  equal to some integer  divided by , for all  from  to . 

Now consider  ,  i.e.  put  ,  and  .  So  the denominators  here are  either  2  or  4.

Therefore, all these points will cut  into  little -cubes of side length . By starring each

little edge then square and so on, all  the upto the little  -dimensional cubes, you will get a

simplicial structure on . This structure, we studied it before. 
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Put   equal to   times  , where   ranges from  to    times  . Let  

equal to . Remember that  is the characteristic map  to , so,  are subspaces

of  and  is a map from  to , so I can talk about alpha inverse of these subspaces.  are

closed subspaces of  ,  being inverse images of closed subspaces. So, each   is a compact

subspace of . Because  is contained in  contained in  etc. actually  is contained in the

interior of , the next one, it follows that  will be contained in interior  that is contained

in  contained in interior of . Each  is contained the interior of . And interior of  is



contained inside  which is contained inside . Because  is a map from  to 

and  is equal to , it follows that interior of  is contained in .

Introduce an auxiliary notation now. Put  equal to  from interior of  to interior of ,

Note that  makes sense of . The whole idea is now I am looking at a map  from 

to  so that  have gone away. We have come to subspaces of Euclidean spaces both in

the domain and codomain. This   is map from here to here so, we will do some analysis here

then go back to our space  via the map .
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So  we  shall  construct  a  homotopy   from  interior  of   to  interior  of   such  that

, if , the starting point this homotopy, or if if  is in the interior of  minus

interior of . So it will not be changing outside interior . Only inside interior of , we are

going to modify , which we define by  has the property that interior of 

of interior of   is non-empty. That means   misses at least one point in the interior of  .

Once you have such a  , you compose it with   to get  , whatever you get you will have

property that you want. So that will complete the proof of the lemma. 
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In fact,  we can then extend   to a homotopy   defined on the entire   by putting

,  for  all   outside  .  Because  outside   is  identically   and  so

composite with , it is . That will complete the proof alright.
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Now choose  large enough so that  is less than  times the distance between  and 

minus interior of . Note that  is contained in the interior of , the complement of interior

 is completely disjoint from  and hence the distance  between the two closed sets above is

positive alright. (We are working within a closed and bounded subset of , everything is within

.) Take  such that  times distance is bigger that .  Note that side length of any little



cube in  is equal to  and therefore the diameter is square of . That is why we have to

divide by  here.

So, if   is the union of all little cubes inside  which intersect  , it follows that   will be

covered by  and  itself will be inside . It will not intersect complement of . That is the

idea. 
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In the picture here, I have drawn these 's in the codomain.  will be inverse image of these 

. They have arbitrary shapes subsets not as nice as 's. But we have divided the domain so fine

that if I take all the little cubes which intersect , then the union will be contained inside , it

will not go out of . 
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Again as we have studied before,  in the Lattice structure,  we can give  , a finite simplicial

complex structure coming from , because  is the union of finitely many -cubes from . So

in proving this and some other  theorems about CW-complexes we are now using results  on

simplicial complexes. 

So look at  the  map   restricted  to  ,  which is  a  continuous function  into  .  We want  to

approximate  it.  Whenever  you  have  a  function  from  simplicial  complex,  another  simplicial

complex you may have to subdivide the domain to get a simplicial approximation. 

So, after taking a subdivision  of , if necessary we get a simplicial approximation  from  to

. So this  is a simplicial approximation to . Note that  is defined on a larger space, but I am

taking  restricted to . 

Then I am replacing it by a simplicial approximation  . Now what we know about  ?   is a

continuous function on  is the same as the underline to space of  which is . And  will

be homotopic to   on  .  We know much more  about  it  and  we are  going to  use  all  these

properties of simplicial approximation here.  
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So here is some technicality of analysis that we have to use, namely, let  from  to the closed

interval  be a continuous function such that on , it is identically  and outside the interior of

, it is identically . This is ensured by Urysohn's lemma, because these two closed sets  and

 minus interior of  are disjoint. Then I would  I would prefer to take  to be simply the

linear combination of  and  but that will not work. I need to do a bit of circus here.

I take this   but then I multiply it  by  . Then I try taking the linear  combination of

gamma  and  . Even that will not do. So have to do one more somersault a final one,

namely, take , for all  belonging to 

Now suppose  is in  minus interior of . Then  and hence , because

the first term is zero and the second term will . That is one of the condition we wanted note

that. 

(Refer Slide Time: 26:26)



Remember that outside the interior of  is identically . To begin with we have defined 

on , but then extend it by  on the whole of . So that was one of the conditions. 
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Now come to therefore  can be extended to a map that is what I have told you. It is only defined

on . But now we can defined it on interior of  by just putting equal to  ignore 

and  for all points outside interior of  minus interior of  i.e. outside interior

of . 
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Now looked at the last map here, i.e.,  . We claim that this   of interior of  

(make sense because we have extended the  on the whole ) will miss some points in 

itself. This will complete the proof of the lemma. The whole of  is not covered by the image of

. This is a claim. 

Suppose   is  . Let us see where it has to go under  . Note that   now equal to  ,

because, for  is equal to , and we have . Now  is a simplicial approximation

to , and   is in  by definition because  is in  and this  is nothing but . It

follows that   is also in   because   is a subcomplex. Therefore, |  is contained

inside . 

(So this observation is not the end but it helps us finally in what we want to say that the whole of

 is not covered by .) First of all, note that  is a simplicial map defined on an -dimensional

simplicial complex. Therefore, its image is contained in the  -th skeleton of  . But   is of

dimension , it's  -th skeleton is a very small close subset, the complement of it is open

dense subset. Therefore,  which is equal to  is non-empty open set.

So let us see what happens to other points in  Just  cannot cover , may be there are

point outside . Now, let  belongs to . By the definition of , this means  is

outside  because  is is the inverse image of . Say  is one of the little cubes  of  but

not contained in . 



So in this picture now I have come outside here it may be here or here, does not matter I do not

know but it is not in the shaded part. The image of  is somewhere here in one of this little cubes

so that is the part here now so it is one of the little cubes  of  not contained in . Note that

this implies that  does not intersect the interior of . Now since each  is a sub-complex of

, since we have assumed that  is in , it follows that  is also inside this sub-complex

. A property of simplicial approximation is used again. It follows that the entire line segment

between   and   lies inside  ,  because   is  a  convex subset.  Therefore  this convex

combination   is inside  . This implies that   which is also in

the line segment belongs to  . But  does not intersect interior of  . Therefore, the entire of

 is going out of interior of . 

Finally now suppose  is interior of . First we took point is , then in . Now we

are taking interior of , which is contained in the interior of . Then by definition,

 and hence is  not  in  .  So,  again,  (interior   minus  )  does  not  intersect

interior of . 

 It follows that  which is non-empty is completely contained inside . So this comes

completes the proof of the lemma. Next time we shall complete the proof of CW approximation

theorem, which is much simpler than the proof of this lemma, okay? Thank you.


