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Continuing with the study of cell complexes, now we take up the topic `homotopical aspects'.

One of the easy consequences of the study of product that we did is that once we have CW

complex , then  is automatically a CW complex because the interval  itself is a

CW complex which is compact. Therefore construction of functions on   which is same

thing as homotopies becomes easy. So this is the first theorem that we have here.

Take  be a CW complex. A function  from  to  is continuous if and only  restricted
each  , all these restrictions are continuous, for each  . What is this  ? the  -
skeleton of X. All that I am going to use here is that the coinduced topology with respect to this
family of closed sets,  is the same as the product topology on . We know that co-
induced topology  from the family of compact subsets is equal to the product topology.

Ignore whatever is said in the slide and the lecture here for  the proof of this lemma. It can be

easily seen as follows.  

(Refer Slide Time: 02:09)



Look at  the identity  map from   to  .  Since   is  compact,  I  know that  this  is

homomorphism, because   has compactly generated topology, and   is compact. Therefore  

from  to  is continuous iff  restricted to every compact subset  of  is continuous. 

 

Now given any compact subset  of , it is easily seen that there is a compact subset  of 

such that  is a subset of . We also know that every compact subset  of the CW complex

is contained in some -skeleton of . Since  restricted to  is continuous, it follows that

 restricted to  is also continuous. So this theorem will be used now often. 
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Now we come to the central in the homotopical aspects of CW complexes, for which we have

been preparing from the beginning with proposition 2.1. Let   be an open subset (or a closed

subset) of  , where   is a relative CW-complex. Starting with   equal to  , put

 intersection the  -skeleton of   for  all  integers  .  Suppose that   is  a

strong deformation retract  of   for  each  .  (Anyway,   is  contained is   because  the

skeletons form an increasing sequence.  is a SDR of  is SDR of  and so on.) Then 

will be a strong deformation track of the whole set .

This is the statement.  The easy part here is each   is a retract of  , then we know that

composites of finitely many retractions will give you that each  is a retract of  for  .

That is easy. 

After that we can see that  is a retract of  itself as follows: I can define the retraction from

 to  to be these composites depending upon where my point   in   is? Every   is inside

some  ,  okay?  So,  the  point   is  in  .  You  define   as  the  -fold  composite

So that is also easy part. The thing is how to get homotopies? We cannot compose homotopies so

easily. Because the domain and codomains are not appropriate. So, let us go through this proof

carefully. 
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Let  from  to  be a homotopy of the identity map which is relative to  given by

the hypotheses that  is SDR of . That is by definition. So these  are the given strong

deformation retractions. So,  takes values inside  for all  and for all

.  Moreover,   for  all  .  Here  the  last  map   given  by

 is the retraction onto   of  . Therefore if I take  ,

then we get a retraction from  to . We do not know at present whether it is a SDR, but we

will see that soon. 

Observe that the  th function   here restricted to   is just  , why? Because  
restricted to  is the identity function, being a retraction of  onto , and  is equal to

. So this is the important thing here. 

Therefore if I define  whenever  is in , then this will be a well defined function

on all of . This map will be actually form  to  and is a retraction because on  all  are

fixed. So I get a retraction. However to show that this  is strong deformation retraction, we have

to work a little harder.

So that step is a new lesson here. How how to get compositions of deformation retractions or

infinite `composition' of homotopies in general, okay? So watch it carefully. That lesson itself

will be useful else also.  
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So, look at this picture. Every thing is happening in the closed interval   I start with the

homotopy  and going to define a new homotopy . In the first half of the interval,  I do not

change any thing, will keep   the identity function . In the second half I take  ,

properly reparameterised; . That is my . Now it is time to define  in a

successive way. So in the next step, I define . This time, up the first one-third of the interval

the function is Identity. Then from  to ,  I will put  and in the rest of the interval I put 

. Remember all this  are homotopies of the identity map and so on these vertical dividing lines,

they will be identities. So they will match up. 

Next step I will take Identity on the first  of the interval,  then  between  and  and

put  in the rest of the interval. Remember that each time you have reperametrise suitably. So

in this way, at the  stage, in the interval from , the homotopy  will be identity,

from  ,  it  will  be  ,  and  in  the  remaining  interval,  we put  the  earlier

homotopy  which we have constructed. I do this is systematically. Now I will have to write

down exact formulae.
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So define , inductively, okay  from  to  as follows. Induction starts at  First

define  as follows:



, for  in the half of the interval and then it is  for . I have

to see that when , there are two definitions here, and they must coincide. When ,

what is  It is , the identity function. 

So inductively,  for   having defined  , we define   as follows:  ,  for

. (if , this is one third okay?) Next, for , you put

,  appropriately  reparameterised.  You  have  to  write  it  correctly,  as

For example when , what will be the second slot here?  cancels out and so it

will be , and we know that . When  this slot will be  divided

by  which is equal to  and so  cancel out first and then the  factor

cancels out to give you . And so we get F_n(x,1)=f_n(x). In the interval from , we

have  to  put  ,  reparameterised  appropriately.  We  choose  the  second  slot  to  be

 so that the interval   is mapped to  .  (In  the slide there is  an

error.)  But in the first slot we must put  instead of , for the simple reason that it should

match with  which is already defined.  So, this is the difference which was not 

explained here in this diagram okay?
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So the definition of  is clear. Now, inductively, we can easily verify that each  is a strong

deformation  of  retract  of   into  .  Moreover   restricted   is  equal  to  .



Therefore the map   from   to  , given by  , whenever   is well

defined.  

I have to show that   is continuous. But this is more or less obvious from the property of the

coinduced topology.  For any open  subset   of  ,  what  is   intersection  with the  -

skeleton? That is equal to  . But that is   is what? It is the same as

. And  is a continuous function so this is open subset of   for each  . This means

 is open inside . The rest of the verification that  is a strong deformation retract of 

into  is direct. Because, if  for all  ,  no matter where t lies. So that is

why it is a strong deformation retraction of  onto .
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Now we can have a nice theorem like this one which we want to remember forever. You may not

be  able  to  remember  immediately  how this  is  constructed.  You  may  just  forget  the  actual

formulae but you should remember this picture here. Then this formulae can be redone. Nobody

remembers them. You can work it out by yourself so that things match up correctly because you

want functions make sense. When you want to patch of two continuous functions defined on two

closed sets, all you need to ensure that they agree on the intersection, that is all. Now what is the

theorem? Theorem is that every CW complex is locally contractible.



Right in the beginning we told you that CW-complexes share lots of topological properties with

the  Euclidean  spaces.  Every  open  subset  is  locally  contractible  in  a  Euclidean  space.  That

property is here with CW complexes also. 

Later on when we define manifolds. They are also locally contractible, because they are actually

locally Euclidean space.  However,  a CW complex may not be locally  Euclidean,  but  still  is

locally contractible. A very important property. 

How to prove this one? What is the meaning of locally contractible first of all? Given a point

 and an open subset   containing that point, we have to have an open subset   which

contains  and is contained in  and which is contractible. (There are also some slightly weaker

versions of this definition but we are not satisfied with any weaker versions. We are going to

prove this strong version.) So every open nbd of a point contains an open nbd of that point which

is contractible. That is what we have to prove alright.

So  using  the  previous  lemma  this  homotopy  lemma,  we  want  to  construct  the  contraction

inductively,  skeletonwise.  So this construction  is  done inductively.  To begin  with there is  a

unique cell   in  so that   belong to the interior of . (So this fact is used again and again,

namely,  a  CW complex  is  the  disjoint  union  of  its  open  cells.)  First  choose  a  contractible

neighborhood  of . Because interior  is homeomorphic to interior of , right? Interior

 will be open nbd of , inside . Actually, we can and will choose a neighborhood  of

 such that it is contractible and its closure is contained . 

Now  for   having  constructed  a  neighborhood   so  that  the   is  contained  in  the

intersection  and -skeleton of , we want to construct  with the same property and with

an additional property that  is a strong deformation retract of . So this inductive

is carried out as follows. 
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(Once this done, the conclusion will follow from the lemma. You see I actually,  now takes the

place of  in the lemma. I would like to do this inductive step now.)
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You look  at  all  the  -cells  in  ,  indexed  by  .  For  each  ,  we have   be  the

characteristic function of the  -cell.  Inverse image of   under  ,   is a close

subset of , so it is a compact subset of . (compactness of  is not necessary and it is wrong

also as in the slides). It is contained in the open set   which is an open subset of  .

Therefore, you can find an  which depend upon  between  and  such that (remember the

lemma before 2.1) the closure of  is containing . For each , given we have

an , so I have function  from  to the open interval    



You define   to be   as in Proposition 1.1. This is the union of all these  

along with  itself. That is definition as in proposition 1.1. Now we take  = union of all 's.

From lemma 2.12 it follows that  is contractible neighborhood of . So basically it is the lemma

2.12 which is employed here, this proposition 2.1.
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The next theorem is about co-fibrations and so on so let me just begin this one with a lemma and

then we will stop and take a break. So  be obtained from  by attaching -cells. See it seems

that all lemmas start with this one the inductive step for CW complexes, so that we can carry on

with the inductive steps and inductive constructions. 

So  is obtained from  by attaching k-cells. Then look at . This is a strong

deformation retraction of  . Let me go through the proof of this one and then stop. First

understand the case special case when we are attaching just one cell.

We have proved, in part 1 of this course that there is strong deformation retraction from 

onto . So this space is like a tub it is like a cylinder with no top and but

with the bottom closed. That cylinder is a strong deformation retract of the entire solid cylinder,

the full cylinder. So this is what we have. This was one of the central results in part 1.
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Let now  be a family of attaching maps indexed over . Let  from the

disjoint union of   to disjoint union of these things on the RHS, that means I am taking

copies of  for each . It is just the disjoint union of copies of the same function. Let  from the

disjoint  union  of   to   be  defined  by  using  the  attaching  maps  on  the  first

coordinate viz., , and the second coordinate is just . So,  are the attaching maps for all

-cells. Once you have these maps, what is the space ? It is the quotient of  disjoint

union with all  , because   is the quotient of   disjoint union all the . So  is a

quotient of this one. 

This needs a proof. By the way, in general, this is not true that if  from  to  is a quotient map

then  from  to  is a quotient map. So you must have some hypothesis on ,

namely locally compactness. So, here  is a compact space, so that this is okay here.  

 

We have,  from disjoint union  to  is the map given by , where

. It follows that  can be though of as the quotient space of  disjoint union of

all ’s by the single relation  equivalent to , for all  in the disjoint union of all 

and for all 
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I want to define a map here below and I have a map already on the top stage. On each part  

here,  it  is a strong deformation retraction, and on the part  ,  it  is just  the identity map,

alright? So, if follows that  factors down through the quotient maps. That is all. Why? Because

on the boundary times , as well as on ,  the entire homotopy is just the identity map. So

you have got a map here at the bottom. To verify that this is a SDR, is the same as verifying it at

the top. 

So let us stop here and continue next time. We will come back to this important result and how

we are going to use this one. Thank you.


