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Last time we started the topic of partition of unity on a CW-complex. We proved the major

theorem there, namely, the existence of partition of unity subordinate to a given open covering,

assuming one of the propositions. 
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Let me recall the proposition first here. It is an elaborate proposition: Suppose  is obtained by

attaching -cells to . Then given a partition of unity on , you can extend it to a partition of

unity on . Moreover, the open covering of  which ensures local finiteness on  will also get

extended to an open covering of  which ensures local finiteness on ,  in such a way that the

sets themselves get extended, i,e., intersecting with , you get the corresponding original open

subsets. Before proving this proposition, we will need another step, namely, the case when we

are attaching a single -cell at a time. Notice here that  is obtained by attaching -cells to ,

may be infinitely many cells. So first we do it for just one k-cell at a time.

A special case is that we start with , and attach one cell with the attaching map as the

inclusion map. So, we start with an open cover for  and a partition of unity subordinate to the

restricted cover on , the boundary. So you must be able to conclude the same thing whatever

you have stated in the proposition here, for this particular case. So that is our first lemma that we

have to prove.  
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So let us go to that lemma now. You have an open covering  for , and , a

partition of unity on the boundary  , subordinate to the restricted covering   restricted to

. Then there is an extension of  to a partition of unity  on  which is subordinate to .

The  proposition is  the  same  thing with many cells  at  a  time instead  of  one  at  a  time.  The

difference is that the subspace is not  but it is happening inside some arbitrary space . That

will not cause any problem as seen later. 
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Let us first prove this lemma. This is the major thing that we have to do. So let  from  to  be a

refinement function for the family . What does that mean? Support of  which is a subset of

, is contained in   intersected with  , for all  . By the compactness of   and



because the entire family  is locally finite, we may and do assume that  itself is finite. So, it

follows that you can find a uniform  between 0 and 1, and for each , an open subset  in 

such that support  is contained inside these  neighbourhoods. Remember what is the

definition of  of ?

The closure of this is contained in  .   are given open subsets of  , from the open

cover  . You take  , as your  ; that will be an open subset of  , which will

contain the support of . If needed, you can take even smaller open subsets, but there is no need,

though I have said `there is exists some ’. 

 

So the support of  is contained in  which is obviously contained in the  nbd. That in turn is

contained in its closure. To ensure that this closure is contained in , you may have to choose

 sufficiently small. Here we are using the statement and notation of  lemma 1.2, which you may

remember.

These nbds are like collars of length , consisting of radial line segments coming out from points

of . As  varies, the union is the nbd . Now let  from  to  be a

retraction, given by  mapsto . So,  will push back the vectors to the boundary. So that is

a retraction.

Put  equal to  composed with . Note that  is defined on . So now the composed with

retraction, it will be defined on . So  is defined to be just . So I have extended

all  to a small neighborhood of . It follows that support of  is contained in . 

So   are extended carefully.  Now by Tietze’s  extension theorem, there exists  a  continuous

extension  second of , denoted by double dashes, defined on the whole of  taking values

in the  closed interval  .  How do these  extensions  look like.  I  do  not  know, except  that

Tietze’s extension theorem assure the existence. This is not quite good. I want to control the

values of these extensions.  So I will do a modification now. 
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By Urysohn's lemma, there exists a map  from  to  , which is   on the complement of

, (  is an open subset of , so take the complement inside ), there it is  and it is 

on the support of . Remember that support of  is contained in  and so these two sets are

disjoint closed subsets. 

Now put  equal to  into . This is the modification of the extension , using a function ,

which you may call a cut off function, occurring as a multiplicative factor. 
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Next, let us look the set  of all those points in , where the sum of all these  is . Remember

that this is a finite sum here, even if the indexing set is infinite, the number of ’s for which  is

not zero will be finite. Also this summation is definitely equal to  on the boundary ; it is the

given partition of unity there. Inside it may be zero at some point. If not, the set  will be empty

I have no problem in that case. So, we may assume  is non empty. Clearly,   is a closed subset

of . 

Now  we  choose  a  partition  of  unity   on   which  is  subordinate  to  this  open

covering . (Notice that   may not form a partition of unity on the whole of .)

Put  equal to the set of all those  such that support of  is non-empty. Those are the

ones which are important for me, among all these  itself is a finite set here but we do not

need to use this fact. So look at all those functions phi which are non-zero on , i.e., that means

that its support should intersect , I need to keep those functions. 

Let  from  to  be a set-function such that support of  is contained in .   is a point

of the indexing set . Because I have started with a partition which is subordinate to , and so

such a function exists. Put  equal to  union this extra set . And let  equal to  on  and 

on  extends this way. 

Then this  is going to be a refinement function for the new family of functions consisting of 

and '. Only thing now left out is to make them into a partition of unity. Their supports

cover the whole of   that much I have ensured. 
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So this is what is shown in this picture. This is my . There are some 's here which cover . I

have put the whole of  inside  does not matter. So  is covered by some this .

There are other open sets which cover the rest. You can study this picture. This   are  some

collar nbds of certain subsets of the boundary here. 
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Finally notice that on the collar of this boundary, the sum total is equal to , and on , the sum

total is . So these two are disjoint closed subsets. So now I will make one more modification.

Using Urysohn's lemma, lemma I get a continuous function  from  to the closed interval 

, such that  is  and  is . Now the extra functions  are all multiplied by this

function , so that they do not enter  nbd;  this function  is killing them. That is want I meant.



All  are multiplied by . Also on ,   is identically 1. So their values on  does not

change. So that is all I have here. Therefore what happens is, away from , one of the  will be

non zero. On ,   is identically   and the sum of  is also  . Therefore this capital  

which is the sum of all ’s and  times sum of all 's will never vanish on . Clearly it is

also continuous. Therefore, we can put  equal to  divided by , and 

That is the final modification I am making. I started first with the family , then took ,

and  and finally  now. Anyway,  if you take the sum of all these,  the sum in the numerator

will be equal to the denominator. Hence this family   equal to the family   together with

 is a partition of unity on  . It is subordinate to  , with the refinement function

being  on the indexing set  equal to .  
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So conditions (i) and (iv) are verified. Condition (ii) and (iii) are yet to be ensured, so that  

actually becomes an extension of . So start with  which is equal to  on . Therefore the

sum of   will be equal to one where as the other summands involve   which is   on  .

Therefore, this capital  is equal to .  Hence  which is  is equal to  on . This takes

care of (iii).
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Finally suppose  is an open cover for  which ensures local finiteness

of . We have to get an open cover  for , which ensures local finiteness of ,

such that for  is same thing as  , where   is set of all indexes   wherein the

corresponding functions are non zero.

Notice that it is not enough to prove local finiteness of . We have to see that the open covering

ensuring the local finiteness get extended. That is important, which has to be handled correctly.

So that has to be verified.  
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So for that, we have to do some work, namely, define   to be equal to  . Remember

what  means. They are all subsets of . So put  equal to  if , and

equal to interior of   if   is in interior of  . If  , then it follows that   is

equal to  So that part is fine. Clearly this family is an open cover for  which ensures local

finiteness of . 

 We have to verify that for  is equal to . That there are no extra indexes

coming here, this is what we have to show here. For this, we observe three things:

   

(a)  if you take , support of  is empty.

(b)   contains , and  is a retraction. And

(c)  is  which is equal to  for all  

For, every point  in this neighborhood, you are pushing it to the boundary and then taking .

From (b) and (c), it follows that both sides of this equation, are contained inside . What is ?

It consist of  and , the members of  do not come here. This is what I have said. Support of

 is empty, that is part (a). So these two sets on either side are inside . 

But why they are equal? Equal because of this (b).  is what? Set of all indexes  such

that  is not , right? It is contained in  because  is contained in 
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Finally, take alpha belonging to . What is the meaning of this? There exists 

such that  is not equal to . But  is equal to , z which is . But then I have

got a point  such that . 

That means this alpha is inside . So every point of  of  is there which is not actually we

need to have that one. So this was the hardest part of the entire story of partition of unity.  

(Refer Slide Time: 25:00)

Now we can complete the proof of the proposition 1.4 very easily. This is needed this is very

important. If you assumed that the CW-complex is locally finite, then this part of them lemma

was not neeeded. It is needed in the proof of the proposition, without the assumption of local

finiteness, on attaching maps. 

To  start  with,  we  have  an  open  cover   indexed  by  the  set   for  the  space  .  Let

 be a partition of unity on , with  from  to  be a refinement function, and

 be an open covering which ensures the local finiteness of  on . For  let  from 

to   be  the  attaching  map  of  a  -cell  in  obtaining   from  .  Let   from   to   be

characteristic map of the -cell. 

For each fixed  , consider the family  . So, I am pulling back the

partition of unity defined on   onto  , I do not want the whole of   at a time. I want to

concentrate on . I have the map , a continuous function from  to . So  is a



partition of unity on , which is subordinate to the open cover 

which is the restriction to  of the open cover . Each  is an  open

subset of 
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Now I apply the previous lemma to this situation of one single , one single cell. By applying

above lemma, you get an extension . Let us denote these functions by , where  belongs to

. There in the lemma, I had , but now the   depends on  and so we change the

notation. That is all. 

The extension  will be subordinate to this open cover , with the refinement

function  from  to , which is an extension of . The lemma guarantees all this to me.

Also, for each , I have an  between  and . For each , and for each , consider,

 in  

If you drop out this  here, all this is part of the lemma only. Let us denote this set by a simpler

notation . Then the family  is an extension of the open cover .

Also  is the same as , which is precisely equal to , (because I have taken the

partition functions to be ; whatever happens inside , the same thing is happening for the

pull-back). 
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Put . Let  be the extension of these all ’s which on  is equal to  and on ,

it is . For each , we define  from the disjoint union of  with all the ’s (one copy

taken for each ,) to the interval  as follows: 

On , if  is in , then it must be equal to ; no changed there and equal to  otherwise. That is

what we want any way; you do not want new indexes to enter . so on . On each , if  is in

 or in , then take it to be . Otherwise take it to be zero.  

So since the union is a disjoint union, the functions  are well defined.  But when you come to
, by attaching the cells via the ’s along the boundary, what happens to these functions?  They

will agree with the corresponding original functions on  here. So for each , all these functions
together define a family of continuous functions from  to . For each , there will be a , (I
am dropping that prime)  from  to . If  is the quotient map, every point in  is  where

 belongs to  or a unique . Then  is nothing but . 

We claim that this family is the partition of unity which extends the partition of unity on  .

Clearly, it is an extension, for  is  itself.  So, let us verify these properties one by one.
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If  is in , then  restricted to  is  on each . So  is equal to  which is equal

to . Therefore, support of this one is contained to . If  is in some (such an

index  is unique right?), then support of  is  of support of  and hence again is contained in

, by definition of . Therefore the family  is subordinate to the open cover ,

with  as the refinement.
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Now, let us take a look at covering ensuring local finiteness. For each ,  put  equal

to   of the disjoint union of  's, where   is the quotient map onto  . Automatically this

 is an open subset in  , because its inverse image under   is precisely the disjoint union



which when intersected with each   is open and also intersected with  , it is open. Also for

each , let  denote  of the interior of . Then the collection  together with

the collection  forms an open cover for . We claim that this cover will ensure

local finiteness of .
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For each , note that  is the set of all  such that support of  is non empty.

As soon as you write  here this will be happening in  and hence this set is contained in

. Now by the compactness of   and local  finiteness of  , it follows that only finite

members of 's are non-zero on . Therefore it follows that this  is finite.

Similarly, for  , first observe that   is the set of all   such that the support of

 is  non-empty.  This  set  is  contained in  .  There many be infinitely  many  's

involved. But the whole point is none of them will contribute any extra element. This is  the

important point. It is subset of  itself. In particular, it follows that this set is equal to 

So, we come to this summation. This step is similar to the proof in the final theorem. Given
, suppose this . Then  is , if  is not in . So only the summands for which  is

inside  will contribute. But then this is a partition of unity on , and therefore sum is equal to .
Otherwise,   is in inside the interior one of the  -cells, say . Such a   is unique. Also, then

 for some  inside . In that case,  is  for all  not in , where  is not equal
to . Only when  is in , or  you will get something. So, this total is being taken over .



But  then it  is  equal  to  the  sum of  ,  the  sum of  the  extended  partition  of  unity,  and
therefore, is equal to .

So this completes the proof that  is an extension of . So this part of the proof is more or less a

repetition of the proof of the final theorem that we have proved. I have told you already that the

existence of partition of unity along with Hausdorffnesss of the space , actually ensures that the

space  is paracompact. If you do not know what paracompactness is, you do not have to worry

about  that  right  now.  Essentially  in  practice.  Paracomactness  is  to  ensure  the  existence  of

partition  of  unity.  That  is  the  key  result  required  in  analysis  everywhere  and  in  algebraic

topology or defferential geometry etc.
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So that was the theorem that I wanted to tell you now as a corollary. Every CW complex is

paracompact.

  

I think this where we stop today thank you. 


