
Introduction to Algebraic Topology (Part-II)
Prof. Anant R. Shastri

Department of Mathematics
Indian Institute of Technology – Bombay

Lecture – 10
Partition of Unity on CW – Complexes

(Refer Slide Time: 00:11)

So, today we shall  pick up one of the most  salient  features  of the coherent  topology which

provides us a practical way of constructing continuous functions. As a consequence, we shall

prove the existence of partition of unity on CW-complexes. This essentially proves that they are

paracompact,  because  if  you have a Hausdorff  space,  then paracompactness  is  equivalent  to

existence of partition of unity. The central theme of constructing the functions by step by step,

namely, skeleton by skeleton will occur again and again in other contexts also. 

The only thing that we assume is that you are familiar with partition of unity to some extent.

Especially, if the space is compact and Hausdorff, then you must be knowing how to construct

partition of unity. Nevertheless, whatever is required here, I will recall them. We will recall all

the definitions needed.  
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You start  with  a  topological  space  .  By a  partition of  unity  on  ,  we mean a family  of

continuous  functions  (that  continuity  hypothesis  is  important  to  here  though it  is  not  in  the

name), some family indexed by a set , these functions , are all defined on the whole of  and

taking values in the closed interval ; they will satisfy the following two conditions:

(1) for each  , you can find a neighborhood of   such that that neighborhood will

intersect support of  for only finitely many alphas.  

This is the same thing as saying that only finitely  will be non-zero on that neighbourhood of .

This condition is called local finiteness of the family { }. It makes the second condition below

meaningful.  The first condition makes the second condition meaningful. 

(2) The second condition says that the sum of all ( ) for any given point in  is equal to .

The  sum makes  sense  because  of  condition  ,  though the  family  may  be  infinite,  the  sum

evaluated at any given point, there are only finitely many non zero terms.

Okay? That is the definition of partition of unity. 
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But now it has to have some relations with other things. Namely, starting with an open covering

of  , a family { }, is said to be subordinate to the covering, if you have a function on the

indexing sets,  is the indexing set of { } and I is the indexing set for the covering, okay, so a

function  should be from  to  such such that the support of , where  is inside , which is

by definition, the closure of the set of all the points  wherein  is not equal to , that is a

closed subspace , that must be contained inside . So that function  is called a refinement

function. So, each support is contained inside some member of this cover, the given cover.
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It is a standard result that on any subspace of a Euclidean space, there is always a partition of

unity subordinate to any given cover. You see, it's much easier to prove this  than proving such a



thing on an arbitrary paracompact  Hausdorff  space,  whatever they are.  Similar to our earlier

Lemma 1.2 of extending neighborhoods and functions, the key result that we need is to use the

following relative version of partition of unity.

This will be needed so that functions can be patched up using the patching-up process in a CW-

complex. So, what we need is a relative version. This means that if you have some partition of

unity defined on subspace, there must be some partition of unity on the whole space extending

the functions  in  the old family.  That is  what I'm going to  define here.  These  are temporary

definitions; you may not find them in literature elsewhere. 
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So, start with a family of real valued functions on .  An open cover  of 

is said to ensure local finiteness of , (so, we want to bring that local finiteness condition to play

a more active role here, by making condition (1) more explicit), so it is supposed to ensure local

finiteness of , if for each , the set  of all  such that  intersection support of 

is not equal to emptyset is finite. See, local finiteness ensures some such open cover exists.  

So, if  is such an open cover, then you say that  ensures the finiteness of . So that is one of

the definitions, making condition 1 more elaborate.  We can keep talking about such a cover

which will ensure the local finiteness of a family.
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Second definition: Take , a subspace of a space . Now, you have an open cover  for  and a

partition of unity  on , which subordinate to the restricted cover. Restricted cover is

defined by taking any number of  of  and intersecting it with , so, collect all of them, that

will be obviously an open cover for  always. The partition of unity on  should be subordinate

to this restricted cover, with the corresponding refinement function .

Let  be an open cover for Y of which ensures local finiteness of . So, all these things play an

important role in that definition of extension. Now, let us have , okay?  is a collection of ,

where ’s are in another indexing set , okay? Suppose this is a partition of unity subordinate to

, such that various conditions are satisfied. (This is going to be a long definition). 

(Refer Slide Time: 08:19)



First of all these indexing set here have to be appropriate, the new index set   must be larger

than the original indexing set  , okay? That is,   is contained in  .  Equality is also allowed,

there is no problem. Next for each  in , the new member  restricted to  must be equal to 

. So, that is part of the meaning of the word `extension' in the definition, okay? 

Next, I have to extend the open sets in  also. For each  inside , there is an open subset 

of , an extension of  which means  is equal to . So each  is extended to an open

subset of  now. And what is the property of this extension? The set  must be equal to the

collection of all  belonging to  such that support of  is non-empty okay. 

Note that   is already is contained in the right hand side. But I want   to be equal to this

right hand side, okay? You may adding extra members in new family here, the indexing set 

may be larger okay?  But support of those extra functions should not enter the open subsets

extending members if  at all,  they should be away from them. This is a very strong condition,

okay? You have to understand this. So, listen carefully okay?

The fourth condition: there is a refinement function beta prime from  to , for the family , and

this   must be an extension of . That means, for an old member,  of   must be 

itself. 



So, with all these conditions we call the family  is called an extension of . The indexing set is

extended,  refinement  function  is  extended,  okay?  And  the  third  condition  is  that  the  new

functions are somewhat away from the old functions that is something important here. We then

call  an extension of .

This is a technical definition, so that, instead of repeating all these 4 conditions, I can just say

`it's an extension'.
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That is, is short, an extended partition portion of unity consists of extensions of all old functions

to the larger space together with some extra functions to cover up the rest of the larger space. It is

important that we make the technical assumption that the support of these extra functions do not

enter into a neighborhood of the smaller space. This is ensured by extending the cover which

ensures the local finiteness. Finally, we should also need to extend the refinement function. Such

extra caution is needed when we want to build up the partition of unity in the inductive process.

All these 4 points here are important to keep in mind. 
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So, here is an elaborate proposition which will ensure the step by step extensions. Let   be

obtained from  by attaching -cells,  is fixed, okay? So, you can mention an index in set for

these -cells say , . Let  be an open covering for  and  be a partition of unity indexed

by  on  and subordinate to this restricted cover . Then there is a partition of unity  which

indexed by  on , which is an extension of  and is subordinate to the cover . Okay? 

The statement of the proposition could be over here. But we want to control what is happening to

an open covering which ensures local finiteness of the partitions. So we add: Moreover, given

open neighborhoods,  belonging to , such that the open cover  ensures local

finiteness  of   ,  there  are  open  neighborhoods   of  ,  such  that  the  open  cover

 ensures the local finiteness for  ,  and these   are nothing but whenever this

 is inside , then  intersection with  is equal to . 

So, while extending functions, we want to keep track of this point. Now why you need such a

thing? That may be more curious to you than the proof of this proposition, which I will post-pone

and let me go to the proof of the partition of unity using this proposition. Then you will know the

role  of  these  extra  demands  we have  made.  Later  on  we  can  figure  out  how to  prove  this

proposition, okay? 
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So, assuming this proposition, let us first prove the main theorem, okay? So, what is the main

theorem? Start with any open covering of a CW-complex . There is a partition of unity on 

which is  subordinate to this cover.  Theorems are always neatly stated as briefly as possible,

okay? With all the hypotheses included, that is actually the standard style of the statement of a

final theorem, so that it is quotable without all the paraphernalia of the notations that you might

have introduced in the preamble to the theorem. So, taking open covering for a CW complex

there is always a partition of unity subordinate to that. 
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Now, how do we begin the proof? We start with the -skeleton. The -skeleton is a discrete set

okay? That discrete set itself will be used as the indexing set for the partition of unity unity now,



okay? So,  is going to be the indexing set which we take equal to ,  namely, the set of all

the vertices of . Define these functions, now doubly indexed, the first  indicating, the -level,

the second index x corresponds to the set , the function  is defined on  to  by the

formula   is equal to   if   and   otherwise. These are indicator functions, they are

delta-functions; if  it is  otherwise it is . So, at each point you take the function identically

 at that that point and  elsewhere. That completes the first stage construction.

Obviously, when you take the sum of all these what happens? At any given point you get only

one function takes  value   and  all  other  functions  take the  value  .  Therefore  the family  is

automatically a partition of unity on . And since  is discrete, each singleton is an open

subset here. It is closed also. So, support of   is equal to  . Each point   is inside some

number of , because  is a covering for the whole of . So, this family  is subordinate to

. We shall fix up a subordinated function here. Since   is discrete, it is clear that  equal

to  is an open covering ensuring the local finiteness. 

So, let   from   to   be a refinement function, that is,  I have to choose, for each point  

belonging to  ,  some member   such that   is in  . You can choose any such

function, you have some freedom here.  
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Immediately, we can take up the induction step and the previous proposition comes into picture.

For each  is obtained by attaching  cells to , right? Applying the previous

proposition, we get:

(i)  a sequence of indexing sets  subset of  etc.,

(ii)  partition of unity  on  which is an extension of ; doubly indexed, where

 ranges over . Whenever you take an  inside , then  restricted to  is equal

;

(iii) A family  of open sets which ensures local finiteness of  . We shall members of

 by ,  x ranging over , each  being a neighborhoods  in .  

They are such that whenever  equals  . So, this was the part of

the proposition. So, we have all these things here. The fourth condition is that for each  , the

refinement function is also an extension. So, I'm just repeating the previous proposition here.

Okay. 
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Now, what do we do?  Put  equal to the union of all . 



Given , I can choose say  such that  first time appears in . That means it is not in 

or any of the previous ones, first time it appears in , okay? Now define  from  to the unit

interval  , by the property that   restricted to any  -skeleton is equal to   on , for all

.  

We know that these restriction functions are continuous first of all, and secondly, that they agree

when you restrict them further to lower skeletons. Okay? that they are extensions, right? So, once

alpha is inside , that is the first time the function  appears and after that it gets extended at

each step. So this makes sense.

From property (ii) it follows   is well defined and continuous on  . The continuity follows

from the fundamental topological property of a CW-complex. Okay? We claim that this family

  is  a  partition of unity  on the whole of  ,  subordinate  to the cover  .  That  will

complete the proof, okay?  I have defined a function   here, which is a refinement function 

from  to  which extends all the 's, i.e., restricted to  it is . This makes sense because 

restricted to  is equal to . 

Suppose now,  is in . Choose  such that  is in  for the first time. So,  is in  but not in

. Then for all  , what we have? Support of   is equal to support of  

because  restricted to  is equal to . 

That is contained in , by the very definition of .  But ,  because  is in

, since  is in  and . Since this is true for all , that gives the support of this 

is contained in  .  Therefore,   is a refinement function for the family   and hence   is

subordinate to . This is very important. Okay?
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Now for any , say again . (There is a unique such .) Define  to be

union of all , where . Starting with , you get  that's the first time you get then

keep extending this open sets. It follows that  is an open cover for . Why each 

is open in ? Because intersected with any  it will be  which is open in . All right.

Of course for ,  it's empty. That is fine. So, this is an open cover core for , Okay?

Now, we claim that this open cover ensures local finiteness for Theta. Okay? After that taking

the sum makes sense and showing that it is equal to  is very easy. So, let us see how the local

finiteness comes. For  is the union of all the  where . 

Because these are inside the indexing , each member has to be in one of the sets ’s.   is the

starting point because  is not in  but in . And for , what happens?  is equal

to the next one, .  The conditions in the proposition ensure that.

So the new entries from , they don't come inside. That's why the this is equality.

 is equal to . In particular, it is finite. Okay?, That's means the cover  ensures the local

finiteness of  
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Finally,  again assume that  is inside  as before. After all, there is a unique such .

The summation  for all  is equal to summation taken over  in only . Because if 

is not in , then  is actually zero. So, this summation is only for those  inside .

But then this is the same as the summation of . Sinc  is in , each   is equal to

.  Hence the sum total is equal to , because on , this is a partition of unity. So, that

completes the proof of the theorem. So, next time we will take care of this proposition okay?

This proposition will be proved in two steps. Okay? Thank you. 


