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Let  us  continue  the  study  of  products  of  cell  complexes.  Indeed,  last  time  we  already

introduced  a  new definition,  viz.,  the  concept  of  local  countability,  okay?  This  includes

locally finiteness as well as global countability as special cases. So, what is the condition?

Every  point  is  contained  in  a  countable  subcomplex  and  that  subcomplex  must  be  a

neighbourhood of the point in the whole space okay.  `Local' means that it should happen in a

neighbourhood,  so the  word neighbourhood has to come here,  okay?  Sorry,  this was the

statement of the lemma.
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The definition of `locally countable' is that every open cell meets only countably many closed

cells.  Now, we are going to  prove this  lemma here okay? This justifies the name of the

definition. Obviously, every point will meet only finitely or countably many closed cells, that

will be also true okay? So, you could have taken this condition as the definition, that every

closed  (or  open)  cell  meets  countably  many  closed  cells  okay?  `Every  open  cell  meets

countably many open cells' would be wrong, because no open cell meets any other open cell;

open cells are mutually disjoint, okay? 
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So, let us let us prove this lemma. First of all, each  belongs to the interior of a unique

cell, say, interior of . Let  be any finite subcomplex containing . What we have to do?

Are you sure that there is a finite subcomplex containing ? All that you have to observe is

that the closure of , being compact, is covered by finitely many closed cells of dimension

less than or equal to , okay? Take the closure of all those and so on. You start with a -



cell  ,  you  may  have  to  go  down,  down,  down,  you  know,  whatever  cells  of  lower

dimension than  which may intersect one of the previously taken cell.  

(Added by the reviewer: In fact every compact subset is contained in a finite subcomplex).

So, there is a finite subcomplex because closure of  is compact okay. Indeed, in this way, we

get   to be of dimension equal to  . So, let us fix such a subcomplex  . There is no

uniqueness here.  The problem is that you cannot stop here because  may not be an open

set in , and so, may not be a neighbourhood of  in . 

 Now for each closed cell  which intersects the interior of , there is a finite subcomplex

that contains . How many such  are there? Countably many, okay? Since there are only

countably many such cells, taking the union of all of them, we get a countable subcomplex

 containing  and which covers . Now I repeat this process. 

I started with a point x which is in the interior of , some -cell, okay? Then I took a finite

subcomplex, which contains this  . Okay? Now, some higher dimensional cells may have

their attaching maps taking some values in the interior of . okay? So you have to take, for

each  such  cell,  a  finite  subcomplex  containing  that  cell  and  take  the  union  of  all  these

subcomplexes, where  ranges over all those cells whose boundary intersects  . Call that

, okay? 

Now carry on with this procedure. What is  ?   is a countable subcomplex, okay? For

each  of  its  top-dimensional  cells  in  choose  another countable  subcomplex  and take  their

union to get , containing  and so on. Finally take  to be the union of all these 's.  It

is clear that  is a countable subcomplex which contains the point . The claim is that this 

is  an  open  subset  of   and  so,  it  is  a  neighbourhood  of  .  Okay?  To  see  that   is  a

neighbourhood of , what we will do?  
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We started with an -cells  such that  in the interior of , right? Call its interior . It is an

open subset inside the subcomplex , okay?  is by choice, an -dimensional subcomplex

which contains the given -cell . 

Now, we play the old game: let  be the extension of  to next skeleton . We know

how to extend open sets from one skeleton to the  next skeleton right? As in the proposition

2.1. (So, this is going to be used again and again. Earlier, I have given a lot of emphasis on

this one.) Then this  will be contained inside  why? Because  will take only parts of

those cells which will intersect  and hence portions which are contained in . Repeat this

argument. What you will get? Each time you will get  which is a neighbourhood of  inside

 and which is an extension of , and each  is contained inside  

 I am just using these  inside ,  is an extension of ,  is contained in  etc., so the

inductive step is, okay, for each  . Therefore, by neighbourhood extension theorem,  

which is a union of 's is open in , because its intersection with each  is  which is

open in  . And   belongs to  , and   will be contained in  , because   is contained

inside  . and   the union of all the  's, okay? So, many of these ideas must have been

clear to you, but you must now practice yourself writing down the proofs correctly.
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Start with any two CW complexes,  and . The product topology on  coincides with

the CW-topology on  in the following instances (this is not an if and only if theorem,

mind you):

(1)  and  are finite.  (We saw this  right in the beginning, Indeed,  we know this for 

(2)  finite or  finite. Okay? Next, 

(3)   or   is locally compact (or equivalently, locally finite. This has also we have seen

earlier.)  

(4)  and  both have countably many cells.  This is something new. The last statement is

the following.

(5)  and  are both locally countable. 

So, this is the best thing that we could say so far. This covers all the earlier cases. You will

see an example also to illustrate that the condition (5) cannot be relaxed further, okay. But

there may be other directions in which you may try to ensure the result. But if one of them is

not locally countable then the conclusion fails. Some particular cases may be there, in which

the product topology but in general this will not be true. 

 

Parts (1), (2) and (3) are already seen. How and when? We have seen that if a complex is

finite  then  it  is  compact.  Product  of  two compact  spaces  is  compact  and  hence  product

topology is compactly generated, and hence coincides with the CW topology.  Similarly, 

or   is locally compact and the other is compactly generated then also we have seen that

product topology is compactly generated. This takes care of the first three statements. The

first thing which we have not yet seen is the case when  and  have countably many cells,



and the next one is when  and   are locally countable, okay? So, (4) and (5) have to be

proved, okay? 
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To prove (4), let  be an open subset of this CW complex . For each point 

inside  , a neighbourhood   of  ,  it  is enough to produce a nbd   for   in   and a

neighbourhood  of  in  such that  is contained inside . If you have done this for

every point that would mean that,  is open in the product topology on . Okay? We

started with an open set  inside the CW-topology. Okay? 

So, we use the hypothesis in (4) which says  and  have countably many cells. So, write 

as a union of  ’s and   as a union of  ’s, increasing union of finite subcomplexes. I

cannot take skeletons and so on here. Any countable complex, you know, is always a union

of finite subcomplexes, how? You enumerate all the cells, okay? Take the first cell it may not

be a subcomplex, but it is contained in a finite subcomplex . Now, the union of  and the

second cell must be contained in another finite subcomplex. Okay? Take that as . Like this

having constructed , take  to a finite subcomplex containing  and  Thus, you

can always write a countable complex as an increasing union of finite subcomplexes. So do it

for both  and . We can further assume that  and  are respectively in  and . 

The  CW-topology  on   and  similarly  the  CW  topology  on   is  coinduced  from  the

collections  and  respectively. Therefore to see that a subset is open or closed inside

, I can intersect it with  and see whether it is open (or closed, respectively) inside  for

each . Since  and  are compact,  is compact and hence the CW-topology on it



is the same as the product topology, from (1). Since  is open in , its intersection

with each   is  an open neighbourhood of  ,  and hence in  the

product topology. We now construct open subsets  and  inductively. 

But then each  is again contain either a finitely many a covered by finite will be compact

since, therefore, it is equal. The first thing to note that CW topology on  and CW topology

on  is equal to the coinduced topology by these families therefore to say something is open

or closed inside  can intersect it with  and see that whether it is open or closed inside

 since  and  are compact. 
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Inductively,  we  shall  construct  sets   and   inside   and   respectively  such  that

 is  ,   is   Then we put   equal to union of  's,   equal to

union of 's. As before, we can appeal to theorem 2.3 to conclude that  are open subsets

of  and  respectively. So, that inductive step has to be done. Okay? For this we have to

use  one  more  small  topological  trick.  So,  we  shall  construct   with  an  additional

property and that will help us to carry out the inductive step. What is this additional property?

viz.,  and  are compact. So, in the construction we are going to make certain  and 

have their closures compact.  
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So, for , what are ? They must be inside  and , right?  belong to 

respectively,   contained in   and such that  such that   and   are

compact. How can you ensure this?

The points  and  are in some open cells, right? The closure of cells are compact right? So,

this is happening inside   and  which are finite CW complexes. So, that is why this is

possible, in other words, all that I am using here is that compact Hausdorff spaces are locally

compact also. So, I can do this one to be compact construction for .

So, now, assume that this construction for some  okay? Then, you will see that compactness

of  and  allows you to find open sets say  and  in , and  respectively, so

that   is  contained  here   and   containing  ,   is  contained  in

. So this is a version of Wallman's theorem for compact subsets of the product

space. I have stated it as an exercise, okay? 

I  will  just  tell  you what  this  exercise  is.  It  is  shared below as  1.6.  Suppose you have a

neighbourhood  of  where  and  are compact subsets of  and , Okay? Then

you can get open subsets   and   inside   and   respectively, such that   is contained

inside ,  is contained inside ,  itself is contained in the given neighbourhood . I

repeat. Suppose, you start with the product space  , arbitrary product space okay? (If

you want, you assume that they are Hausdorff spaces.)  and  compact subsets of  and 

respectively,  is contained in an open set  of the product space. Then you can choose



open subsets  containing  and  respectively such that  itself is contained inside

, okay? So, this is what we have used here.   contained in  and  will mean 

and , Okay. 

(Refer Slide Time: 25:21)

Now use 2.1 repeatedly. You can extend  to open subsets  in 

respectively, such that  is inside  and  is in . The point here in choosing,

 is that  may not be equal to , but now  will have that property. So,

this was the gist of 2.1 right? You can extend... that means intersection with this one must be

equal to . So,  and , you know, are some arbitrary open subsets, larger than the

original ones, and so when intersected with the old one they maybe larger than the old ones,

that will cause problem. So, these extension proposition is needed. Now your problem is

over. 

What we have done? I will just recall what we have done statement (4). If you have countable

CW-complexes   and  , then the product topology coincides with the CW-topology. The

5th one is easier, if you use the 4th one, okay? 
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So, given a point  , by the previous lemma, which we started with today,

there are countable subcomplexes  respectively in  and  right? such that  and  are

neighbourhoods of  and  in  and  respectively. Fix  belonging to  contained in ,

and  belonging to   contained in  such that   and  are open subsets. That is possible

because  and  are neighbourhoods. Okay? 

Now, essentially what we are trying to do is to reduce this problem (5) to problem (4), viz., to

the case when both of  and  are countable case, by replacing  by  and  by . But, we

still do not have that picture completely, because the final conclusion has to be for the whole

of , not for just , right? So, this needs some argument. 

So, let  be open in , the CW topology. Take  belonging to , okay? Then

 will be open in  which is equal to  by (4). Therefore, there are

open nbds  and  of  and  respectively in  and  such that  is contained in .

Then  is open , okay? Therefore, it is open inside . Similarly  is open in .

Now  belongs to  contained in , okay. So, (4) actually helps to

solve this problem (5). 
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Here is an example, due to Dowker, which tells you that if both   and   are not locally

countable then product topology need not coincide with the CW-topology, okay? So, for this

we start with the following notation:

Let Euler font  denote the set of all natural numbers and  denote the set of all functions 

from  to  . Consider the real vector space   which is the direct sum of copies of  , as

many copies as natural numbers. Let  denote the direct sum of  as many copies of  as this

, which is indexed by functions from   to  . On both these spaces,  both, you give the

compactly generated topology, okay? We are now going to construct a subspace of this  

that will be called   and another subspace of   called  , with the subspace topologies,

which  will  be  automatically  compactly  generated.  Both  will  be  1-dimensional  CW-

complexes. When we take the product of   with  , the product topology will not coincide

with the CW-topology.  So that is the idea, okay? 
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So, choose the standard basis elements for  and , namely,  and , respectively

indexed by natural number and functions   from   to  . Now put   equal to all the line

segments emanating from  and ending at the point . So, you can write them as , where

 is real number between  and . So, look at all of them. They will be incident at the origin of

, okay? and the other endpoint will be the vector , okay? This is a -dimensional CW-

complex, okay,  consisting of  just  edges,  all  of them having single point  in common and

indexed by these vectors   themselves. Similarly,   will consist of all points  , where

 and  ranges over all functions from  to . So, it is exact similar to , only the

number  of  edges  here  is  very  huge.  Then  both   and   are  CW  complexes,  and  -

dimensional, Okay? And you can think of them as one point union of a number of edges.

Okay? 
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The claim,  as I have told you, is that the CW topology on  is strictly finer than the

product topology. So, in order to prove that, we will display a subset   which is discrete

closed subset inside the CW-topology, but it will have the origin   as a limit point in the

product topology. 

That subset  is precisely  consists of points , doubly indexed by  as well as . What

are they? The first coordinate is  and the second coordinate is , for all 

and for all functions . So, this will be one of the points on the edge cross edge, okay? Each

 is a point in the  -dimensional cell in the product space, a  -cell here cross a  -cell

there, okay? As you take  and  different, okay, say,  and , that will be in a different -

cell.  So,  all  these  points  are  in  the  interior  of  exactly  one  -cell,  ,  okay?

Therefore, by our old lemma, the set   is a discrete closed subset of the CW-topology on

.  
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However,  we are now going to show that the origin  in  is the closure of , with

respect to the product knowledge. What is the meaning of that? Take any open subset around

 and show that it intersects the set  , okay? So, an open subset around   in the product

topology will contain a smaller open subset of the form , where  is a neighbourhood

of  in  and  is a neighbourhood of  in , okay? Automatically, for each  and , we

will have some  and  in , numbers depending upon  and  such that the entire line

segment  where  varies from  to , is contained inside , and similarly the segment

 will be contained in . This will be true for every  and every . 
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Therefore,  now,  I  can  give  you  a  sequence  of  points  which  converge  to  the  origin.  So,

consider   from   to   given by   equal to the maximum of the two numbers plus  ,

where the two numbers are   and the integral part of  . So, these two are some natural

numbers now, okay? Take the maximum and add one. Then  tends to infinity as  tends

to infinity because  is bigger than . Hence, you can choose little   such that  is

bigger than , as well as . Automatically, it follows that  is less than equal to

 and . Therefore, the point  belongs to 

So, that completes the proof of the counter example. Thank you.


