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Welcome to  lecture number 8 module 8. Last time we started the computation of the 

fundamental group of a circle, we have introduced exponential function E: ℝ → 𝕊1 namely 

𝜃  going to  and verified a few basic properties of this map which is going to be used 

very heavily in this computation.  

We also saw that any two lifts of a function from a connected space to 𝕊1  through the 

exponential function  will differ by an additive constant. In other words, if you fix one 

point--- the value of one point,  then the lift is unique. There cannot be two lifts with the 

same value at a single point. This much we have seen, which will be used in the proof of 

the existence theorem. 

Now, we want to show that given any  continuous map f: 𝕀 → 𝕊1  such that, (let us assume 

this-- it is just a easy way of carrying on this one) f(0) is 1.  (If it is not 1 we can also do 

that, that is not an essential part). Then there exists a unique map g  : 𝕀 →  ℝ such that g(0) 

116



= 0 and E ○ g = f namely every map can be lifted uniquely after specifying the starting 

point. The unique part we have already seen. We  also introduce what is our plan of proof. 
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Look at the set Z, the set of all points t inside the closed interval 𝕀 such that g is defined in 

the closed interval [0, t]. So, this is a subset and it is non empty because we can take t = 0 

then of course, we know that g(0)= 0 can be defined so that  exponential of g(0) which is 

exponential of 0 is 1 which is  f(0). So, that verifies that Z is non-empty. Our idea was to 

prove that Z is both open and closed. 𝕀 being connected, a non-empty open and closed 

subset must be the whole space.  

So, there is a plan using the order in 𝕀 . We can even simplify this idea even further by the 

following idea namely, let us look at the supremum, the least upper bound of the set to Z. 

The set Z is bounded therefore; it has a least upper bound. That upper bound may not be 

inside Z it will be inside the interval [0 1]. We will claim that this upper bound t0 is actually 

inside Z. That corresponds to almost proving that Z is closed,   a closed interval.  

So, the old idea is slightly changed into proving that the supremum belongs to Z and the 

supremum is nothing but 1. So, that will prove that Z itself is the whole interval [0, 1] 

which is the same thing as saying g is defined on the whole of interval [0, 1]. So we want 
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to prove that the supremum of Z is inside Z and that supremum cannot be smaller than 1. 

It has to be 1 of course. It is bigger than 0 because already 0 is there.  
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Now, consider the open set V which is 𝕊1 ∖f(t0), where t0 is some point in the interval 

which is the supremum of the set Z.  f(t0) is defined. Look at the point, - f( t0 ),--- throw 

away that point. Then you get a big arc. On that arc we have a log function log function is 

from the arc to  ℝ,-- back to  ℝ. So, there are many log functions. Which branch you would 

like to choose?  So, let us look at this one.  

So, let 0 < epsilon < 1.  Let us have this notation namely 𝜖 . I would 

just like to have this much but it may happen that my choice of epsilon is somewhat big 

and it will go out of the interval 𝕀. So, I will intersect this with 𝕀.  If your epsilon is 

sufficiently small this will be completely inside 𝕀 there is no need to intersect with 𝕀.  That 

is all.  

 Look at this V.  It is  a neighborhood of the point t0. Therefore, by continuity,  there exists 

some 𝜖 positive such that the entire of  will be contained inside this open set V. So, 

this is  not because of continuity-- it is actually  an open set.  I am taking this t0 which goes 

into that open set.  
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So, some  is contained inside V--- that is by continuity. V is open, f (t0) belongs to 

this set,--- I have thrown away - f (t0). So, f (t0) belongs to V. So,  will be contained 

inside V for some >0𝜖. Now,  you may use lemma 2.3 . Look  at the log functions-- there 

are several of them-- inverse of the exponential function. There will be one copy from V 

to U which is the inverse of exp where U is the interval containing g( t0 - ).  

g( t0 - 𝜖) makes sense because t naught is the supremum of the set Z. So, everything 

smaller than t0 will be inside Z. Therefore, g is defined there. So, g( t0 -  ) makes sense, 

this will be in one of those various inverse images, so, I am choosing U to be one of those 

intervals. And they are logarithms  now, from V to U will be an inverse of exponential. So 

it will be a 1 -1 mapping.  

So, g( t0 -  ) is such that this interval U is contained inside exponential inverse of V. 

Exponential inverse of V has all these disjoint intervals. All that I do is now put h equal to 

logarithm composed with f namely, h = ln ○ f.  f is defined on this subset  will go 

inside V. We will take  going here. Then we have g( t0 -  ) will be h( t0 - ) and 

exponential of g equal to exponential of h on this interval.  

Therefore, by uniqueness at one point if they agreed, they must be agreeing everywhere. 

Hence by uniqueness again we have g equal to h on this interval. There are two functions 

now, at one point they agree, so they must be agreeing on the interval. Therefore, we can 

extend the function g on Z, (  it is already defined) over Z union 𝕀𝜖 this interval. So, this is 

the trick.--- pick up a point  that is the end point of the definition, you can extend it slightly 

that is the whole idea.  

Now the end point.  I do not know whether g is not defined at the end point. I do not know.  

So, supremum may not be inside Z, but any smaller  value should be ---if you move to the 

left that will be inside Z. So from that I can extend g on 𝕀𝜖.  That means I epsilon is 

contained in Z.  ….. 

So, this first of all implies that t0 is not the end point,  if 𝕀𝜖 contains t0 in the interior. Then 

t0 will not be supremum? Therefore, t0 must be the endpoint, the endpoint of this interval.  

The moment t0 is smaller than 1,  𝕀𝜖 will be larger. So, it will go beyond t0 therefore, t0 is 
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less than 1 will give you a contradiction because there will be a larger number inside Z than 

t0. So,  t0  must be 1. 

So, in one single go we are getting both--- essentially showing that the set Z is both open 

and closed. This was easier than that part. So, we are using this one. So, essentially we are 

using the local behavior of the logarithm function. So, if  the lift is defined there, we can 

extend it to the full interval.  Inside that interval, the chosen logarithm function is a 

homeomorphism. It is a unique way of extending.  There is  no ambiguity about that one. 

So, these things are all used very rigorously here. So that proves the existence of lifts. Up 

to an additive constant they are unique also all. All paths can be lifted up to additive 

constants. So, now we will make a derivation.  
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I am prepared this much: namely a passage from loops inside 𝕊1, now we can go to some 

maps  inside  ℝ. But what happens if we  start with a function from 𝕀 to 𝕊1 such that f(0) is 

equal to f(1). We take the unique map g from  𝕀 to  ℝ such that E ○ g = f and g(0) = 0. 

Further, if f is a loop, suppose f(0)=1, you started with a loop means f (1) is also equal to 

1, then g (1) will be also an integer because  must be equal to 1.  

We call this integer the degree of f. Now, this is a strange thing, we took some g but that g 

is unique and that is why we can define the value of g(1) as the degree of f. In particular, 
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suppose you start with a map from 𝕊1 to 𝕊1, that is a loop. We will remember that one. We 

have a map from 𝕀 to 𝕊1 with both 0 and 1 going to same point, it  can be thought of as a 

map from 𝕊1 to 𝕊1. We can use it as a loop via parameter t going to  .  

So, that is t going to f( ).  Take the corresponding map g : 𝕀 → ℝ, call  g(1),  the degree 

of f. So, here we would like to convert a map from 𝕊1 to 𝕊1 into a map from 𝕀 to 𝕊1 and 

then lift it. From 𝕊1 to 𝕊1 we do not want to lift it. Maps from 𝕊1 to 𝕊1, we cannot lift them 

because the endpoints may go to a different points. That is the whole idea, of one the 

endpoints will go to a different point when you lift it. So, to allow that you have to think 

of this loop as a path from 𝕀 , a function from 𝕀 to 𝕊1 rather than 𝕊1 to 𝕊1.  The role is revised 

here.  
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Justification for this terminology, why the  term `degree’ that needs some explanation? So, 

here is an example, let us take f(z) = zn  from 𝕊1 to 𝕊1 then the map g is nothing but g(t) = 

n · t  and hence g(1) will be such that  is 1. What is g(1)? that is all we have to know. 

So, the lift of the map z going to zn  from 𝕊1 to 𝕊1 converted into an map from 𝕀 to 𝕊1 is 

nothing but n · t  such that n is the degree, the degree of this polynomial zn . So, this is it,  

now, this much  justification is good enough. Slowly you will understand that this degree 
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is really a good name. Later, step by step this concept will be generalized to maps from 𝕊n  

to 𝕊n also and then to maps from manifolds to manifolds. This degree concept is very, very 

important.  
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The first thing is we have taken a function from 𝕊1 to 𝕊1, map from 𝕊1 to 𝕊1 and then 

assigned a degree to it. This degree, this association,  the number is a homotopy invariant, 

path-homotopy invariant. So, this is what we want. So, this is the proposition 2.2 . If f1 is 

path Homotopic to f2 then the degree of f1 is equal to degree of f2. Let us go ahead and we 

will take care of this aspect later on.  

 Let us start with a homotopy: Let  H: 𝕀 × 𝕀  → 𝕊1 be a map such that H (0, s) =f1( s),    H 

(1,  s) = f2 (s),  H (t, 0) and  H (t, 1) equal to 1 for every t and s. That is the definition of a 

path homotopy,  from f1 to f2. Now, let G : 𝕀 × 𝕀  →ℝ be a function such that exponential 

of G equal to H. And for all t inside 𝕀 the function s going to G (t, s) is continuous and G 

(t, 0 ) = 0.  

I am taking a function G : 𝕀 × 𝕀  →ℝ, I am not telling that is continuous. But if you fix t, 

then as a function of s this is continuous. And G(t, 0) is 0 for each, each t. I am defining a 

lift of the function H( t, s), where s goes to H (t, s), t is fixed, so that is a path, and that path 

can be lifted. Each fixed path for then, (first coordinate is fixed,) you can lift it by the 
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previous proposition such a G is defined. G( t, 0) , the starting point is 0 that is what I do 

in proposition 2.1  Such a function G exists.  

So, in order to prove a proposition, we have no other choice, but to prove that G itself is 

continuous. If I show that G itself is continuous, then what I get is a Homotopy of lifts, this 

is what we wanted to prove. So, if capital  G itself is continuous, and exponential of G  is 

H,  then capital G will be a lift of H.  So, we have no other choice, but to prove that G itself 

is continuous, jointly in both variables. That is the point. Only when you fix  t, s going to 

G( t, s), is continuous. That much we know.  
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So, this is what we are going to prove now. Put U± after throwing away ±1namely U+ is 

𝕊1 ∖{-1} and U- is 𝕊1 ∖{+1}, this minus is throwing away the point 

(set-theoretic minus). So these two are open arcs U+ and U-  They will 

cover the whole of  𝕊1. The inverse image of these things under capital H (started with a 

homotopy H) that will be an open cover of 𝕀 × 𝕀.  

So, for compact sets with an open cover you have the Lebesgue number, there exists a 

number, 𝛿 positive, called the Lebesgue number for this cover such that if S any sub square 

of 𝕀 × 𝕀  of side length less than 𝛿 then the entire of  H (S) is contained inside either U+ or 
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U- . So how do I manage this one? All that I have to do is take the Lebesgue number and 

take  𝛿  less than the Lebesgue number divided by √2.  

Then  every sub square of 𝕀 × 𝕀 of side length  less than 𝛿 has its diameter less than  √2 

𝛿 which will be less than the Lebesgue number. Therefore, they will be contained inside 

H-1 (U+) or H-1 (U- ) -- all these sub squares. This is the same thing as saying that  H of this 

sub square is contained inside either U+ or U- . So, let me show you the diagram first then 

explain this a  bit more clearly.  
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So, what I have done is I have cut down  𝕀 × 𝕀 into smaller squares, each  small square here, 

under H, will go either inside this whole U+  here or the U- . Remove this point and take all 

this part either it avoids this -1 or it avoids + 1. It will not be a subset like this starting from 

here to here, that is the whole idea. It avoids either  -1 or avoids the +1, the image of each 

squared here. Is that understood?  

So this is what the Lebesgue number does in  several cases in analysis. So, this is part of   

analysis here. So once I have such a 𝛿 what I do is, I will cut down the square. Cut down 𝕀  

into,  you know intervals like 0 < 1/n  <  ··· < (n-1)/n < 1. I have to choose n to be 

sufficiently large so that  1/n is less than this 𝛿  that is all. Then each square will be having 

side length less than , so this hypothesis will be true.  

Now, to show that  G is continuous:  G is defined as a function  but we have  to show G is 

continuous. It is enough to prove that restricted to every sub square, G is continuous. How 

does a subsquare look like? Something like [k/ n, (k +1)/n] ×  [l/ n, (l +1)/n], where l and 

k are between 0 and n-1.  On each square if it is continuous then you are done. There are 

finitely many squares, they are all closed squares, so, I have to show that  H is continuous 

on each square.  

So, how do we start? We start from the bottom here, we first show that the function H is 

continuous on each of these bottom squares. Using that we will do the same for the second 

stage,  then third stage, fourth stage, and  so on. So, proving the continuity of H will be 

also done inductively on this, the value of s here.  
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So, what  have we done?. Take  l equal to 0.  Consider  Sk,0.   It may be this or this square 

here or this or this or whatever one of them.  Sk,0, this whole thing ( remember all these are 

initial points, they are here they are mapped to this point), therefore, this entire thing cannot 

avoid this point 1, which means  they have to avoid -1. 

Because they cannot avoid +1 because all these points are mapped to this, this point here. 

Therefore, G( Sk,0 ) these things are  contained in a disjoint union of open sets.  The inverse 

image of U+, inverse image of U+ is nothing but all (n-½, n+½) because half integer-points 

go to -1 under exponential function. So, they are avoided, so all these intervals of length 1, 
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any two of them disjoint, one of them must contain G( Sk,0) because G ( t, 0) is g(0) on that 

square, (all these lines) see.  That  is the trick here.  

G may not be continuous on Sk,0 and the whole of it, but on each vertical line it is 

continuous,  and the vertical lines are connected. So, if it is contained in the union like this, 

it must be contained in one of them, only one of them. Which one? Wherever the starting 

point is, the starting point we know where they are, they have been chosen inside 0, starting 

point little g has been chosen to be starting point of that.  

So, that is what,   G(t, 0) is 0 for all t. So,  we know that G( t × [0, 1/ n] ) is contained in 

the interval (-½, ½ ), by the continuity of G restricted to  t ×𝕀.  This is what is happening. 

So, G( Sk,0) must be inside of (-½, ½ ). Once you have one single thing, the exponential 

function is a homeomorphism with its inverse being log here. Therefore, G itself will look 

like log ○ H but log function is continuous here.  

Therefore, G is continuous on the whole of Sk,0. ------ Now, what happens? In particular, if 

you look at this line, this is s = 1/n , So, on this line it is continuous.  Now use this fact,  

and proceed, the proof is the same.  

Look at one of the squares here, the same argument will tell you that it will be continuous 

on each of these squares. In particular, it will be continuous  on this line. Once you have 

that it will  give you the hypothesis  for the next squares and so on. So, induction starts.  

 

 

It will be continuous on each of these squares, this argument will be used in a much larger 

context later on, as an argument, this is all we need. But details will be slightly more 

complicated technicalities. We will do a big generalization of this one later on, when we 

study covering spaces.  
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So, what we have got is: G itself is a continuous function on all of   𝕀 × 𝕀 to  ℝ exponential 

of G is the the original H. Now look at the degree of f1 which is G(0, 1) but that will also 

be equal to G( 1, 1), but that is the  degree of f2. Difference is a constant, that constant must 

be the same for both of them because they are all in one single G continuous function 

difference is the constant integer that is what we knew.  

So, that integer must be the same. You just look at the end point of G for each t That will 

give you the various integer degrees of H( t, s) for fixed t.  If t= 0 that will be the degree of 

f1 and t=1 will be the degree of f2. This is what we are doing here.  G(0, 1) will be  the 

degree of  f1, G(1, 1) will be  that of f2. And  then the  whole of G ( t, 1) is  continuous.    
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Thus we have a well-defined function from the set of path homotopy classes of maps from 

𝕊1 to 𝕊1 to integers namely the class of f goes to the degree of f. Irrespective of what element 

of the class you choose, because they will be homotopic, the degree will be the same.  

So, this is our first attempt in the computation of this group. We have got a function on it 

to  ℤ.   The next step is that we want to show that it is a group homomorphism and it is 

surjective and injective. So it is an isomorphism, that we will do in the next module. Thank 

you. 
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