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Continuing with the application of various theoretical results that we have proved, today let me 

first begin with recalling the definition of Euler characteristics which we have defined for a 

simplicial complex X. Namely, if you denote the number of vertices by ,  number of edges 

by   and so on.  In the simplicial complex we can denote these numbers more  conveniently 

by  so on, i.e.,   the number  of -simplexes of X by  Then the alternating 

sum    is called  the  Euler characteristic of X.  

Exactly same way we can define this  for a pseudograph also.  This time the number of vertices 

denoted by  and  number of edges denoted by , there is no 2-cells and so on in a 

pseudograph. So, Euler characteristic of a pseudograph is defined just as .  It will 

coincide with the definition of the ordinary pseudograph if this pseudograph happens to be a 

simplicial complex that is one dimensional simplicial complex. Now, what this has to do with the 

whatever we have done.   
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Last time we did one important result about the fundamental group of any pseudograph. Namely, 

if you start with a  connected pseudograph, the fundamental group is a free group and  the rank of 

free group is equal to the number of edges outside any maximal tree T inside X. So, this is what 

we are going to apply right now and get a nice formula in terms of Euler characteristic for the rank 

of the fundamental group.    
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This is the corollary. It is a one line corollary but it is very important and easy to remember. For a 

finite connected pseudograph the rank r of the fundamental group is given by 1 minus  . So, 
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how do you do this? Very easy. The number of edges in any maximal tree is equal to .  

What is ?  is total number of vertices. If there is only one vertex there are no edges at all 

in a maximal tree. If there are two vertices they are connected by 1 edge you cannot connect it by 

2 edge, then it would not be a tree at all. Like this you see if there are n vertices you exactly need 

n minus 1 edges to connect them.  

So, if there are  vertices, -1  is number of edges. Since we know that the rank of    

is equal to the total number of edges minus the number of edges inside a maximal tree . So, it is 

  which is the same thing as  .  That is all. So,  

the formula is proved.  

So, now we will give application of this corollary but this itself was a corollary to this corollary.  
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So, now we will give an application to one of the very very important result in group theory. It is 

called Nielson-Schreier theorem.  Both of them have  actually done a lot of group theory  but their 

work was  all motivated by topology, they have done a lot of topology also. Every subgroup of a 

free group is free. That is the result we want to see.  

 Remember, a free group has basis the subgroup may not have basis coming from this base it need 

not be a subset of basis. Only thing what we say is every subgroup of a free group is free just like 

every subgroup of free group which we are dealing with is which we are knowing already.  
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So, there is a further clause here. Indeed, if  is a free group of finite rank r and  is a subgroup 

of finite index, then the ranks can be related by the following formula. Namely, if   is the rank of 

the subgroup and   is its index, then  is  equal to    

So,  we can now derive this  by using Euler characteristic and something more that we have done. 

Everything in the course itself. Namely, we have given a simplicial structure to a covering of a 

simplicial complex.  The simplicial structure coming from a simplicial complex of the given 

simplicial complex in a very particular way. So, that we are going to use here now.  
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So, let us start with the following. A free group has a basis. Let me denote  that base by  I, which 

is just a set.  Then I take as many copies as number of elements in I,  the boundary of the 2 -

simplex, the standard 2 simplex . Boundary of the standard 2-simplex,  remember, is 

homeomorphic to he circle . So, it has fundamental group infinite cyclic.   

So, what I do is I take as many copies as the number of elements  in  I,   then I performed this 

bouquet, the  one point union of them.  Namely, identify one selected vertex say,  vertex  form 

each copy  to a single point. Select one point one vertex from each of these copies of the dell 

bounded delta 2 and identify them to a single point. So, that is the meaning of this wedge of this 

family  

A wedge of topological space,  in general,  is defined by this method. And it is given  the usual  

quotient  topology here. So, in this case,  each of them is a copy of boundary of delta 2 which is 
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homeomorphic the circle.  Then we know that as a topological space  |K| is homeomorphic to the  

bouquet of circles.  We have computed the fundamental group of this space  X which is nothng 

but  the geometric realization |K| of the 1-dimensional simplical complex.  

So, starting with an abstract  free group ,  we have realized it as the  fundamental group of a 

space |K| which  is constructed in a very particular manner, it is a 1-dimensional simplicial 

complex.  Now, given any subgroup of the fundamental group we can construct a covering of |K| 

corresponding to this. This is our general covering space theory. Let   be the 

connected covering corresponding to the subgroup  What is the meaning of 

this? Let us take  as a base point sitting over the base point ,  

Then,  is an isomorphism.  Covering map   induces a homomorphism 

 which  is injective and  the image is precisely .  So, this is what the 

general theory of covering spaces says. That I am going to use it here now.  

But now,   itself has a simplicial complex structure, a  1-dimensional simplicial complex 

structure, because,  X=|K|  is a  1-dimensional simplicial complex. Also, how this structure is built? 

that also we know exactly. Already the fact that  where    is a 1- dimensional simplicial 

complex,  implies that  the  fundamental group of  is free.  So, the first part of the theorem is 

over.  

Now, for the more elaborate part, namely, suppose F is a free group of finite rank r (i.e.,   

then this bouquet will also have exactly r copies of boundary of delta 2, r empty triangle  will be 

there. How many r of them? All of them having one single point as a common  vertex.  

So, therefore you can count the  number of edges and number of vertices here. Then for each vertex 

in K,   there will be how many vertices? That  depends  upon the number of sheets of . So, how 

does the number of sheet  determined? The index of this group subgroup  that we have taken, 

that is equal to the number of sheets of .  
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 So, there will k many vertices for each vertex below. Similarly there will be k many  edges in   

for each edge in K.    So, we can now start counting.  Let me repeat, for the more elaborate second 

part, let I be a finite set with cardinality of I equal to r. Let F prime be a subgroup of index k in F. 

Then p is a k-sheeted covering  projection. It follows that the number of vertices in  is  k times 

the number of vertices in K. But, number of vertices in K is precisely equals to 1 plus 2r. In each 

triangle there are 3 vertices but one of them is common so that should not be counted repeatedly.  

So, that is only once and then for other 2 for each of them, there are  r triangles,  so 2r of them in 

all.  Therefore the total number of vertices in  is equal to k(2r+1).   

Similarly, number of edges inside  is precisely to k times 3r. So, k times e K what is e K? e K 

is 3 times each triangle has as many 3 of them as edges. So, they will be 3 times r. So, it is k times 

3 times r. So,   Euler characteristic  You do not need all these elaborate thing but 

I have just written down.  

But, then  by the earlier formula  =   That 

is the statement in the second part.  This completes the proof.  

 For example, if your group is a free group of rank 2 and you have subgroup of index 2  then what 

will be the the rank of this subgroup? Only 1 minus 2 plus 4 equals 3.   

So, certainly  the subgroup has  subgroup has has rank bigger than the rank of the group.  
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 So, this result is  used  several brancheds of mathematics,  differential geometry,  algebraic 

geometry and so on.  One of its consequences is  called as Riemann -Hurewitz formula. 
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So, now I will give you another important application of this G coverings that we have done. So, 

here let X and Y be connected locally contractible spaces or we may assume slightly weaker  

conditions like locally semi locally 1 connected semi locally simply connected. Some such thing 

you can assume to ensure that simply coverings exists.  So, locally contractibility. Let  

be any map and  Cf denote mapping cone of f. Then the inclusion induced homomorphism  

  is surjective and the kernel is the normal subgroup N generated by the image 

of  . Here  is any continuous function.   

So, if you want to be very careful here, you have to select a base point here say  and 

  and then you have to write down these points while writing down the 

fundamental group.   Those things are obvious and also always have to be remembered. Here what 

is more essential and simple I have stated this. Instead of writing all the base points and so on. So, 

those things will be done carefully in the proof.   

Moreover, the entire statement is independent of what base point are  taken. If you change the base 

point  in X to say  then you change it in Y also to .  The statement  will be still be true. 

Therefore, what you remember is this statement. But, a more elaborate a statement has to be also 
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remember always whenever fundamental group is involved you if not be very careful finally you 

have to put the base points. So, that is the summary of this one. 
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So, I have deliberately omitted mentioning this point so that it will be easy to remember not that 

you would forget it. You  make it  a practice not to mention it, yet remembering it.  
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So, let us recall something  because it is a long time we have done these things. Let us recall what 

is the mapping cone, mapping cylinder and so on so that we write down a proof carefully. So, 

given any topological space X,  CX is defined as the quotient of    wherein we identify all 
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the points , to a single point. The mapping cone is defined similarly but little more elaborately. 

You take    and then you identify  to single point, also you identify 

   for every   You see the map  is invloved in this definition.  Then the 

mapping cylinder is defined in a slightly  different way, namel,  the first part of the identification 

is not taking place at all. Namely, on , it is X cross the unit interval perform the 

identification   for every x in X. I am just recalling this I cannot run the whole  theory 

again. There is a standard notation that all the points x comma 0 are identified to single point that 

point is  denoted  by  and that star is called the apex of the cone. The whole CX is star shaped at 

this star.  Remember that.   

Therefore,  CX is always contractible. Moreover, if you throw away that point  then the remaining 

portion is nothing but  .  Therefore, it is a strong deformation retracts onto  X. You can 

push the entire thing  to  which is homeomorphic to  X.  X can be thought of as a subspace 

of , via  where    At 0,  there is not the whole copy  of X but only single point 

is there.  
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There is also another obvious inclusion map. From CX you throw away the base, that is an open 

subset anyway.   is the  base. Then the open set .   You can see that 

CX X cross I disjoin union Y I have taken whatever identification is there those things are also 
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there here. Except that  in CX, there is no identification on  whereas in  there is   some 

identification here.  

Therefore, if I throw away ,  the open part then that is contained inside .  So, let us just 

denote it by ,  V is temporarily notation that is an open subset. Also look at 

the open subset obtained by throwing away the star from Cf. If you throw away star,  that is  same 

thing as the  mapping cylinder U=Mf minus X cross 0. If you identify the whole X cross 0 is single 

point that is Cf.  

So, you are throwing away here you throw away this part also that is Mf. So, U and V are both 

open subsets of Cf and  . So, so far what I have done is setting up notations for 

application of  Van-Kampen theorem. Like you had this in the case of spheres,  then you removed 

North Pole South Pole and then you took the intersection and so on. That is the kind of thing we 

are doing here again.  

So, intersection let me denote it by   This is all just convenient temporary notation A 

is nothing but   So, let us have these notations also , these are 

the inclusion maps. So, let me show you the picture first. 
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So, picture is here this is the entire mapping cone. So, this is the star so this is X cross let us say X 

cross half half way. This whole thing is 0 to 1 here. So, at there is at 0 there is 1 identification at 

X1 also there ia identification here X will be identified with f of X. So, I have taken X naught as a 
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base point for X but this is actually I have put it X cross half half way. I could have put it at any 

level t not equal to 0 or not equal to 1. Anywhere I can put it is a same thing. So, from here to here 

this entire thing this is my V and from here to the rest of thing this is my U.  

So, union is the whole space see here interaction will be remove this point remove this part Y and 

this open part which is nothing but X cross open interval 0 1. So, we will come back to this this 

picture again.  
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So, right now this is what I have said.  Therefore, so, one more thing,  namely, I have shown  as 

a base point,   whatever it is  does not matter, .  But,  whereas I am interested in  

. Therefore I have take the base point to be   So, 

that belongs to  A=    Our obvious choise of taking  to represent a copy 

of X does not work here.  So, we are now identifying  X with .   
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Once you have this, we have this Van Kampen's theorem. The Cf is written as union of U and V 

it is a common base point  belonging to  all of them. I take pi 1 intersection of these two is A. 

So, pi 1 of A x naught eta 1 check eta 2 check then these are also inclusion maps so I am not 

writing them separate notation is not necessary.  

Inclusion induced maps here. The statement of Van Kampen's theorem is that pi 1 of Cf is pushpout 

i.e.,  the amalgamated free product,  namely, it is free product of this group with this group  modulo 

the normal subgroup generated by the image of this minus this and so on. So, that is what we have 

written down here.   
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It is pi 1 of U star pi 1 of V modulo the N is normal subgroup generated by eta 1 check g multiply 

by eta 2 check g inverse that is one single element at g belongs to pi 1 of A. Take all of them then 

take the normal subgroup generated by them. The quotient of this is pi 1 of Cf. I can put the x 

naught hat here x naught hat, x naught hat here all this. Base point can be always written down this 

written down here. There is one (())(26:51) but now we know all these things so we have figured 

out what these things are.  
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Now use the fact that V is star-shaped at  the .  Every star shaped space  is contractible. In 

particular its fundamental group is trivial here. Therefore, this statement here becomes simpler.  

Whatever we have proved it gives you this pi 1 of V there is no need to write there is a trivial group 

so it is pi of U and eta 2 of g there is no need to write. They are all trivial elements it is the normal 

subgroup generated by eta 1 of g as g varies over this,  which is  the same thing as normal subgroup 

generated at the image of pi 1 of A under .  

So, image of pi 1 of A under  eta 1 check. So, this is the neat expression that we have got. Pi 1 of 

Cf is the quotient of pi 1 of U by normal subgroup generated by eta 1 check.  We are not yet 

through. So what is this U? What is this eta 1 etcetera you have to figure out. Because, these are 

not in the beginning of our statement in the statement only X and Y and f are there,  so everything 

you have to convert it into X and Y and the map f.  

So, look at  inclusion induced homomorphism . Remember this is not given to 

be monomorphism or anything. It is given by the inclusion map.  That  homomorphism  is 

surjective and its kernel is the normal subgroup generated by   So, if we go back to this part 

you can ignore the upper part here. This part is an exact sequence which is surjective kernel of this 

map is this one that is the meaning of this one. So, we have to do one more step here to understand 

in terms of X and Y that is the that is the major part of the thing is over. We have to figure out that 

the correct thing is arrived.  
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So, this is the picture going back to the the mapping cone.  is sitting in the middle  of 

A  with  as the base point.  This is a deformation retract of A. Therefore the inclusion 

induced homomorphism is an  isomorphism here. Then  A itself is contained inside U so this is pi 

1 of U here and this is that is the identification here. So, there is q check, the quotient. Inclusion 

followed by the the quotient restricted to the subspace that is an inclusion. So, here it is just the 

porjection map,  forget the t-coordinate half,   This is the projection map so the 

induced homomorphism is again  an isomorphism on pi 1.  

Now, you see pi 1 of X x naught so this is nothing but this copy of this here. From here I have f 

check to pi 1 of Y so what is the map here. Remember, the mapping cone whole mapping cone 

there is a deformation but here I have removed  just the one open part here that is all. So, mapping 

cone that is a map any bracket x comma t going to f x this is very different map and that is why I 

have written here  so this is   is a strong deformation retraction  on to Y. So,   is an 

isomorphism on the fundamental group.   

So, what we know  this Cf here is sitting here that is an inclusion map here but here I have taken 

different map here. So, inclusion map is factored by this way it goes into Y and then it comes here. 

So, this is a commutative diagram here. This is  surjective and its kernel is precisely this one this 

is what we have seen from pi 1 of A. Pi 1 of A is isomorphism to this is isomorphism to this one.  

So, the problem here is you see that  this is x naught twiddle here is f check this is y naught so 

what is its base points where do they go. That required all these detailed explanation.  So, you still 

may wonder if still have some doubt you can use the last part of the diagram namly, the   

commutaive trianlge.  That is strictly not necessary,  never mind , you have completed a proof this 

part is over now.   

 I have taken trouble to explain  exactly what happens to these base points under these maps.  

Because, this is in some other map here f twiddle of that comes to y naught that is fine. So, you 

have to understand that this map is a homotopic equivalence so it is an isomorphism. But why it 

should be the same thing why this diagram is commutative.   
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So, here I have elaborated this let us go through this once again. The unlabeled arrows indicate 

homomorphism induced by the inclusion maps here. What are they? This one there is only one this 

one here this is something this dot dot dot I will explain it. And q is the restriction of the quotient 

map  ,  x comma t is or notation is x comma t in bracket round bracket changes to 

square bracket. ,  all this I have told you.  

Since, p is the restriction of the projection to , it is a homeomorphism and hence  c 

is an isomorphism. As seen in an earlier theorem, namely, about the homotopy properties of the 

mapping cylinder, if you do not remember this is what it is. Namely,   is identity of .  And 

 is a strong deformation retraction.  The map  j  not included here in the diagram.  This j is  the 

inclusion  from Y to mapping cylinder  U, up above so j followed by    is identity map of Y and 

this is a strong deformation retraction this is what I am going to use  now.  

So, but I will be write down what is that strong deformation retraction here. Let us take

 given by    This defines a homotopy of 

identity of Mf with  restricted to Y. What are points here? When t equals to 1 that is the point of 

Y. So, on Y it is the identity map this is the meaning of this one.  

When t equal to 1,  it is 1 minus s plus s which is just  1. So, you can extend it by identity on Y. In 

rest of the time it is homotopy when s equals to 0, RHS is , so it is  identity map of the mapping 
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cylinder itself. When   So, in particular , it follows 

that  is an isomorphism.  Note that  

Commutativity of the left side rectangle is obvious at the topological level itself.  look at this X 

comma half goes to X here X comma t bracket X comma t goes to x. Here, x comma open x comma 

half open there is no identification goes to x of bracket here. So, this is obvious so this f of that. 

Once some diagram is commutative at the topological level, the diagram of  induced 

homomorphisms will be commutative at the homotopy groups  level.  

Only commutativity of the triangle on the right side involving the dashed arrow  has to be justified. 

What is this one? So, this is remember,   What is this ?  So, I will explain that one now. This 

changes the base point  to .  Remember, U is a subspace of C_f  but this 

is not the  inclusion induced homomorphism. Here the base points are changed.  

Both  and you have the  arc here  from one point to the 

other.  You trace it this way the other way around that is the path .  Whenever you have  a path , 

 defines an isomorphism of the fundamental groups effecting a change of base points.  Take a 

loop here,  start at the other base point here now go via tau to the first base point and  trace the 

loop comeback by the tau inverse. So, that is the definition of  if you remember that,  that is 

fine, otherwise I have just recalled it to you now.  

So, what I am going to use this thing.  We get a homotopy here to push this ,  by a homotopy to 

this point .  So, that is  precisely the  role of this homotopy.  Namely, as if the base point is 

slowly moved along this point to this point that is the homotopy I want write it down and then you 

are commutative  this were the same thing.  
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So, for   So, I have taken a family of paths  . 

Now let us look at s is equal to 0.  .   That is precisely this this arc traced from 

1 to ½. So  What is ?  When  s equal to 1, we have   which is the 

constant path at   So, I begin with  the full  path  and slowly I  trace it upto  only, up 

till here and finally this is the constant path at    

So, that is the family of arcs .   Check that tau naught is a constant path at y naught equal to x 

naught comma 1 tau 1 is tau in the segment x naught cross half 1. Trace in the opposite direction. 

Now go back to whatever  deformation  you have written  earlier,  put  and we shall 

use this.  

Now given any loop omega in Mf like this picture which is omega here at base point x naught 

inside the whole of Cf that will be converted into,  by pushing the  base point here to all the way 

to  a loop based at y_0.   There are two things you have to do here. So,  given a loop omega in 

Mf at the base point x naught hat we want to prove that h tau omega is homotopic to f hat composite 

omega f hat composite omega is a path is a loop in Y at the base point Y naught.  

If you show this one then this diagram commutativity of this path follows this h tau. Whenever 

you push this loop here it is loop here inclusion map followed by this one that is fine. So, this is 

what we have to prove.  
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And here is the  formula let us check.   Consider   Remember   

that composition  of paths make sense only when the end point th first on eis the same as the 

starting point of the next.   So that is what you have to  take case: write tau s star hs composite 

omega star tau s inverse t. Check that F is a homotopy as required for h tau of omega to a f hat of 

omega.  
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So, it follows that the  inclusion  induced homomorphism  is  surjective 

with its kernel equal to the normal subgroup generated by this one.  
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 So, we shall come to the last result of this series now. As a special case of this general theorem 

take the space X to be a circle and f be any map into Y.  

That is a special case. When you take a cone over that it is nothing but the  space  obtained by 

attaching a two cell to Y. Because, the cone over  is nothing but the 2-disc.  So, that is a two cell 

being attached via the map f to Y so that is the special case. So, we shall slightly generalize this 

one not just one at a time but several 2-cells being attached.  That is the next result here.  
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So, let Z be a space obtained by attaching 2-cells  ‘s,  not just one, but several of them indexed 

over  to a path connected space Y via the attaching maps .  Let  be a path in Y 

from the base point  to .   This 1 is indicating  complex number 1  which is being 

taken as the base point for each copy of  Let,   denote the element    represented 

by the loop .  

Note that  is  a loop at . So take start at   , take  ,  follow it by  , and then trace   

 to come back to .  That is Then the fundamental group   is isomorphic to the 

quotient of     by the normal subgroup generated by all the elements  , as  runs  over 

.  So, take the normal subgroup generated by this collection,  go modulo that, that is  pi 1 of Z.  
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So, the missing thing here if you look at is that in the previous theorem where X is connected Y is 

also connected and you are  given the base points and the map respected them.   But now,  here  

the family ,  by definition, is  disjoint, the union will   not be connected.  

So, except that it is similar to the previous theorem so we have to be careful how  this can be done.  

We cannot directly apply  the case when there is only member in .  In that case, of course,  it is 

direct application of previous theorem. Then it is image of image of this pi 1 of S 1 pi 1 of S 1 

which is infinite cyclic then normal subgroup generated by that one that is precisely to what it is.  

(Refer Slide Time: 47:57) 

 

Now, I have to be cautious.  We shall give the proof of this statement  only when  is finite. The 

general case follows by what is called  a direct limit argument which we shall teach you in the 

second part of this course.  Not only that,  in the second part,  the attaching cell etcetera itself will 

be  formalized into what is called a  CW complex.  

Not only just attaching one cells and two cells you will do as in K cells in general and then we 

study those things very elaborately. So, you may check that this last result here is a motivation for 

the second part. So, let us workout this one when  the family  is finite.   
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 First of all I want to repeat. Suppose  is a singleton. Then we can apply the above theorem by 

choosing base point  . We are free to choose the base point. Here, ,  and  Z can 

be viewed as   the mapping  cone  of .  

 Since,   is  infinite cyclic group,  generated by  the  inclusion map .  You may 

denote it by  and [ ] will denote a generator for . It follows that its image under f 

alpha check is nothing but the class ,  as a loop,  since  itself.  Therefore, 

 is the quotient of  by the normal subgroup generated by   You do not 

have to take all the elements in the image, because all other elements are powers of f alpha. So the 

case when lambda is a singleton is over.  

Now what we are going to do, we do a simple induction.  The only problem is each time the base 

point will have to be  changed. and therefore it is important to realize that our earlier theorem was 

`base point free’. It is the  unique feature of this result that  any  base point will do. So, that is why 

I have taken so much of trouble in that one. Let us now use it here.    
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Now consider the case when f alpha 1 may not be equal to y naught. We then appeal to the 

isomorphisms ’s.   are some fixed paths in Y from  to   . Then 

  is an isomorphism which we want.  

Once this is an isomorphism a normal subgroup here  will go to normal subgroup here. And  in 

this case, what is are the normal subgroups? Here it  is generated by  and under  this element 

goes to  and then normal subgroup on the other side generated by .   

 So, this will give you now the statement for y naught. Where y naught is a fixed point base point 

for Y independent of what f alpha. But, now this is applicable for all the other alphas also, when   

 is not a singleton.  

So, you can apply one by one.  First label the elements of   First attach  via    

,  next attach    via  and so on.  What you get is that the fundamental group of the  secod 

one is the  quotient of the fundamental group of the first one by the normal subgroup generated by  

 .  So, together  the the fundamental group fo the second  one will be the quotient of  the 

fundamental group of  Y  by the nromal subgroup genrated by So, the case is got 

by a simple induction.  

The infinite case does not immediately follow from this.  Even in the the countable.  So, for that, 

you need what is called as direct limit arguments. So, that will be a part of the next course the 
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second course to this one. So, you are welcome to attend that. Thank you,  I have enjoyed teaching 

you people. Hope you all learnt something from this course. Thank you.  

 

 

 

979


