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Last time we introduced paths, path homotopies and then examined or studied a number of 

homotopical properties of  path composition. The path composition has two sided identities which 

are different as such because paths have different end points, it is associative and it has an inverse 

also. Each path if you take the reverse way of tracing it will be inverse  only up to homotopy. This 

is what we have seen.  

Today, we have specialized to the case when the end points are the same, x0 = x1. We start with a 

space X and fix a base point x0.  We are going to define what is the meaning of 𝜋 (X, x0) which 

is going to be a group. What is this group? It consists of homotopy classes, the path homotopy 

classes of loops. What is the meaning of a loop? A path which has both its end points at x0.  

Loops based at x0. This is the set . The composition law which you have defined now becomes a 

binary operation on this set, because if two loops are homotopic to each other and another two 

loops are homotopic to each other, their compositions will be homotopic to each other, this 

homotopy is path homotopy. Therefore the composition law goes down to the set of homotopy 

classes of loops and that binary law we have seen  becomes associative.  
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Now, the two sided identities which you have, namely, the constant loop at x0, because both sides 

are the same now, i.e., the endpoints are the same- that is why. Also the inverse will  trace the same 

loop in the opposite direction--- that will be the inverse. So, automatically we have got a group 

associated to a space X together with a  specific point x0.  
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A loop and its homotopy will always be contained the same path component of X ,--it will never 

get out of the path component of X, which contains the point x0. Because, the loops have to start 

there. Homotopies  also have to respect that point x0 and so on. Therefore, all the time we will be 

inside the component C of X which contains the point x0.  For each point there is a component.  

So, the group (X, x0) is identical to the group  (C, x0), under the ordinary inclusion of C inside 

X. Because of this, I could have assumed that X itself is path connected.  Wherever you have 

started, it will remain in that component. So, for this reason, in many many other things which will 

have to do all the time with continuous maps from connected spaces, path connected spaces, this 

will happen.   

In algebraic topology, it is customary to assume that a space is path connected. What is the reason? 

That, each path component can be studied first and then you can put them together ---you get the 

study of the whole space. Because a space is always divided into its path components. Now, within 

a path component you may have taken different points for defining 𝜋 (X, x0). So, let us assume 

that X is path connected and suppose I take another point x1   
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and look at     (X, x1). What is the relation between 𝜋 (X, x1) and (X, x0)?  This is what we 

want to study.  Namely,  under change of base points, what happens to the group?  
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So,  instead of x0 and x1, I have taken the notation a and b. ( Changing notations like this is 

somewhat dangerous first of all, but it is also a good practice, so that, ultimately, you will start 

thinking without reference to actual notations.) Suppose you have two points inside X. You can 

take a path from one to the other. When you take a path from one to the other, suppose you have a 

loop at one point then you can view it as a loop with a tail at the other point. 

A loop with a tail! It will be also a loop, but its base point will be the end of the tail. So, this is the 

picture you should keep in mind. Now, when I speak like this, I have not used any notation you 

see--that is the whole point of changing the notation.  

So, suppose you have two points a, b-- these are  initial and  terminal points for this path 𝜏  --- a 

is fixed, b is fixed,  and 𝜏 𝜏 is fixed.  Then what happens? Take a loop  at a. Pre and post compose  

it with  -1 and   respectively.  To start with -1   ,  -1 will start from b and come to a. Then you 

trace  , again you are at a. Now you go back by  to b. So, you are starting with b and you are 

ending with b, so you get a loop at b. But   is a loop at a, its class will go to the class of -1 ∗  

∗𝜏  . Why?  Because if    is homotopic to some  1 then pre and post composing by paths,  -1∗  

1∗ 𝜏 will be homotopic to -1∗ ∗ .  
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This is what we have seen in yesterday's class and previous class. So, I shall  denote this map by  

. This is a set theoretic function now, on the homotopy classes. But I claim that this is a 

homomorphism. Very easy to prove this one, using our earlier information, namely,  what happens 

under compositions? Associativity law can be used here. Insert 𝜏  * -1 in between because that is 

homotopic to identity.  

The entire class does not change. If you use that trick,  then you can show that  is a 

homomorphism. What is the meaning of  a homomorphism?  of a class 𝜔 1 ∗ 2 must be          

the class  of  (  1 )  ∗ (  2 ). How to get it? You have 𝜔 1 ∗ 2, you can write as 𝜔 1 ∗ 𝜏   ∗ 

𝜏  -1 and then 𝜔* 2.  

𝜏  *  -1 in between can be introduced because it is null homotopic. Now, if you apply , 𝜏  -1  

and 𝜏    will come again on both sides. The entire thing you can break it into two groups, put 

brackets that will become (  1 ) * (  2 ).  

In exactly same way, you can see that   namely, using the path  𝜏  -1  which will be from b to 

a. Therefore, you will get a map from 𝜋 1(X, b) to  1(X, a). If you take first   and then take  

 that is the same thing as composing with  ∗ -1 on the left as well as on the right. But ∗ -1  

is homotopic to identity, the constant loop. Therefore, it is nothing but identity map. This just 

means that  is same thing as  . 

That means,   is an isomorphism. So, we have proved that changing-base-point is given by  a 

group isomorphism. If we are interested only in the isomorphism  class of the group, then there is 

no problem. It will be displayed in a slightly different way. Isomorphism of a group gives  a 

different  copy-- isomorphic copy. So, you must understand that the groups need not be the same, 

but they may be isomorphic, like two equilateral triangles of the same side length you draw.  They 

are different triangles after all. For example, one may be containing the origin, another may be 

containing some other point say, (100, 100). They will be different, but as triangles they are 

isometric. Similarly, in group theory it is important to understand that groups may be isomorphic 

yet they would be different groups. So, sometimes this difference does cause problems, you have 

to be careful with them and then you would like to see what is that isomorphism that we are taking. 

So that the isomorphism becomes important. So, this point you know, is not just an imagination, 
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it actually happens in algebraic topology itself.  Understanding of this is needed much later. Right 

now, it will not come in our way in this course.  
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So, this is what the sum  this remark 2.6. While dealing with a path connected space, we often 

need not mention the base point at which the fundamental group is being taken. Why? Because 

they are all isomorphic. If your interest is only knowing the group up to isomorphism. It should be 

noted that the isomorphism itself will depend upon what path you have taken. Within X, joining a 

to b, there may be several paths.  

For instance, if the two paths are homotopic- path homotopic. Then the isomorphisms should be 

the same. Yet they may not be identity isomorphism, there is no identity isomorphism between 

two different groups. Identity isomorphism makes sense only when the groups are the same. But 

they may be same isomorphisms if the two maps are ---two paths are path homotopic. If they are 

not, then the isomorphisms may be different. So,  you should keep this  in mind. In this course, we 

will never meet this aspect at all. 
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Let X be a  path connected space. We will make a definition now, the modern definition of simply 

connectedness. So, the space X is said to be  simply connected if the fundamental group 𝜋 1(X, 

x0)  is the trivial group consisting of one single element. This may happen at one point but then it 

will happen at all the points, because at all other points also it is isomorphic to the trivial group.   

So, this definition is independent of what point you take for a path connected space and if the 

fundamental group is non-zero at some point it will not be, it will  be non-zero at all other points, 

because all of them are isomorphic--that is all I want to say.  This definition of simply 

connectedness  is the most useful and the strongest definition. You might have come across with 

many other  definitions of simply connectivity-- for instance, when you were  doing complex 

analysis.  

In complex analysis, you can have something like 10 definitions of simply connectivity if you 

want or even more. But when you come out of that to arbitrary spaces, most of those definitions 

will not work at all. Even if they work,  some of them, they will be quite different than just simply 

connectivity. This definition is the strongest of them all.   
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So, going back to examples, we again come to the star shaped regions inside ℝn. Take a star shape 

region, starred at a point with apex point x0 . What does that mean? That means that if you take  

any other point in X, then the line joining that point and x0 is completely contained inside X. Using 

this line segment, you can easily show that every loop based at x0 is null homotopic, namely,  

homotopic  to the constant map   at x0. Take any 𝛼 , which is a loop at x0. 𝛼 (t) can be directly 

joined to the constant loop, constant loop at x0. What is the map? -- s (t) + (1 − s) x0. Does this 

line segment make sense? Because the entire line segment is inside X. This we have seen before 

right? I am just repeating this.  

So, all star shaped subsets have trivial fundamental group, so they are simply connected. In 

particular every convex subset is simply connected. In particular, the whole ℝn is simply 

connected. ℝ, ℝ2, they are all simply connected. All closed discs are  simply connected. Even 

regions inside an ellipse or ellipsoid and so on-- they are all simply connected because they are all 

convex subsets.   
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Now, we will give you some different way of looking at 𝜋 1(X, x0). Look at the map   

defined on the closed interval [0, 1]. It is injective except at point 0 and 1, they were the same 

point, namely, the unit vector 1, (1, 0) in the complex plane, in ℝ2 .  That is the property of the map 

  We need this map very much.  

So, this means that the endpoints are identified and all other things are kept as they are under a  

one-one mapping. So, when you take the quotient space of the interval, wherein endpoints are 

identified, interval modulo 0, 1 that is my notation here. This will be homeomorphic to the circle 

 via this map . So, it follows that, when you have a loop namely, a map 𝜔   → X, wherein 0 

and 1 go to same point, that map will  factor down  through this quotient space  modulo  0 

identified with 1.  

Which is the same thing as having a map from the circle into X.  A very specific point here is  the 

image of 0 and 1, namely,  the  unit complex number 1 in . Therefore, every loop can be thought 

of as a function from  to X and its base point being the image of 1. Therefore, instead of looking 

at the way we have done ---paths from a closed interval, we can take this set namely set of all 

continuous functions from  to X which takes the base point 1  to the base point x0.  
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Conversely, if you have such a map, you can compose it with  and get a map from 

interval   into X which sends both 0 and 1 to the point x_0. Therefore, under this identification, 

what you get is a new way of looking at 𝜋 1(X),  which is nothing but homotopy classes of maps 

from  to X, wherein the homotopy is taken with respect to the base point, this base point never 

moves, 𝜔  = x0 always,  the entire homotopy always fixed at this point x0.  

So, this way loops are nothing but images of  that is what you have to think about. If you need  

a base point there,  you know on a circle you could have thought of any point as a base point, it is 

still a circle. So, that freedom is there, but you have to fix a base point before taking homotopy 

classes. that will be the base point for arbitrary loops inside X.  
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Now, what we have is starting with a pointed space,  (X, a), we have given a group. This 

assignment has what I keep calling functorial properties. So, let me repeat: What are these 

functorial properties. Suppose, you have a map  from X to Y such that f(a) = b, then what happens?  

If you take a loop at a, composing with f you get a loop at b. 

If two loops are homotopic  in X. f of this and f of that are homotopic to each other inside Y. 

Therefore, a map like this induces a homomorphism f# : 𝜋 1(X, a) → 𝜋 1(Y, b). The definition is: 

f#( ) is nothing but the class of f ○  .  Because of  the way we defined concatenation it follows 

easily that f#( ) is f#( ) ∗ f#( ). So, everywhere we are taking composition with f so the 

homotopy will  be    
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(This is not because of associativity sorry.) So, this makes it a homomorphism:  

f#( ) is f#( ) =f#( ).  This  is more  like  distributivity. So, any continuous function induces 

a homomorphism of the corresponding fundamental groups.  
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With the additional property that if you have identity map, what does identity induce? --induced 

homomorphism is also identity. Suppose you have another map from (Y, b)  → (Z, c),  

f : (X,a)  → (Y,b) and  g :(Y,b)  → (Z,c). Then I can talk about g composite f : (X, a)  → (Z, c). 

Under this g ○  f, what happens?  

(g ○  f)# will be  g# ○ f# . Because all that I have to do is take ,𝜔 compose with  f on the left anfd 

then with g.  So, g composed with f ( ) is nothing but g ( f ( )). So, this is associativity. The g of 

f of something means g# of f of that. So, it is g# (f# ( )).  

Suppose now,  f and g are homotopic themselves as maps from (X, a)  → (Y, b) where the base 

point a does not move ---this is the extra hypothesis we have to put, not just homotopic maps. They 

are homotopic maps relative to the base point (which we have not yet defined but I am telling you 

now what is the meaning of this,) this  just means that a does not move  during the homotopy --ft 

of a is always b, all the homotopies  must have f_t(a) = b, g(a) is also b or some other, g here was 

in item 2 g or something different here, I am taking f and g are homotopic maps but they are from 
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(X, a) → (Y, b) both of them. Then the induced homomorphisms on the fundamental groups  are 

the same. That means f# is equal to g# .  
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 These properties are going to play a very crucial role throughout the study of fundamental group. 

For instance what we get is this: suppose two spaces are homeomorphic, pick up a 

homeomorphism, let us call f is a homeomorphism from X to Y. Take  a base point  a here,   and 

put b = f(a). Then I have already an isomorphism from 𝜋 1(X, a) to  𝜋 1(X, b). Why? Because f is 

a homeomorphism, f inverse will give you the inverse of  f#   ;  (f# )
-1 is the same thing as (f -1)#.  

Therefore homeomorphic spaces must have isomorphic fundamental groups.  So,  if  you take two 

spaces and conclude that their fundamental groups  are not isomorphic, then you have solved a big 

problem, the spaces that you are given are not homeomorphic to each other.  So, this is the way it 

is used ---already in our introduction I have told you,-- how this was used to solve a big problem 

in topology, namely, that the classification problem cannot be solved. However, we do not know 

any space yet for which 𝜋1 is non-trivial. All our examples were convex sets and star shaped  sets 

and so on. We do not know any example of X where 𝜋 1(X) is non-trivial. So, we will do that by 

computing 𝜋 1 of a  circle. In some sense, this is the simplest example. The actual computation is 

an illustration of a powerful notion that  we are going to study later, namely the covering space. 

That will be done in  the next module. Thank you! 
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