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Before we take up the central problem in this chapter of classification of G-coverings, I would like 

to present a method of obtaining new G-coverings out of the old ones, this time, by a change in 

the base itself. Since this method involves a new concept which is important on its own, not only 

in algebraic topology but elsewhere also,  let us study this one a little more carefully and in a little 

more generality, not full generality.   
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We start with a base space B and take 2 functions .  Their fibred product is defined to 

be a triple consisting of a topological space and two functions  with the  

condition that   So, the composite map from Z to E1 to B or Z to E2 to B, they 

are the same and this entire thing satisfying the so-called universal property.  
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So, this is the picture,  is here, E1 E2 are here, B is here ok. So, f1 and f2 are functions into B. 

Then  pi 1 and pi 2 respectively are functions into E1 and E2 respectively. If you have another 
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commutative diagram like this, Z prime, pi 1 prime, pi 2 prime respectively maps into E1 to E2 

such that when you compose f2 here and f1 there they are the same   then  we 

have a map here such and two commutative   triangles.   

This is the conclusion of the definition, there exist a map , a unique map , such that 

the whole diagram is commutative, namely .  For every  and pairs of 

maps which satisfies this property, there must be a unique map like this. But this is a universal 

property of this commutative square here. Then this Z together with these two maps is called the 

fibred product of  and .  

But this is the definition of the fibred product of two functions taking values in the same space B. 

The uniqueness of such a triple , ,  up to a homeomorphism, 

follows easily by this universal property. Namely, suppose   is another such triple which 

also has the same  universal property, then it will admit a map from   in the reverse direction 

here,  again giving a similar diagram, all these diagrams are commutative. Then what you have is 

g prime let us say,  going from  to , and coming back by  that will be another map from Z 

to Z itself fitting this diagram. Identity map fits this diagram from Z to Z also, So,  there would be 

two  of them. By the uniqueness  property, this map composite map must be identity, 

.  That means what? By  the same argument, we get , 

that is  is a homemorphism.  This is typical of all universal 

properties, definition given by universal properties. Existence of such objects is not guaranteed but 

uniqueness is guaranteed. So, let us look at the existence, the existence here is very easy compared 

to many such existence theorems.   
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So, for the existence, what I do is I define Z to be the  subspace of  consisting of pairs 

 such that under , we have   Take the product and take the, this subspace. 

On this subspace we already have  the restriction of the  projection maps given by this product, 

, just take restrictions on . So, these new maps, I am using the same 

notation but I am thinking them as maps from .  Obviously, 
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So, the commutativity of this diagram is obvious. You have got, you have got a commutative 

diagram like this, all right? That we have constructed inside the product space.  
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But now I have to show this  has the universal property right?  That is also easy, for if  

is another triple with the same property, then  I am taking  to be 

  which is an element in  as such.  But when you go here, they 

agree that is why, by the very definition of  the pair  is acutally inside  
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So that gives you a map into Z. So, that is what I am doing here. F1 prime Z1 and f2 prime Z2. It 

is not, this definition in this notational output pi 1 prime here. So, I should take pi 1 prime, pi 2 

prime ok not f1 prime f2 prime. So, that g fits the diagram in the only way a map can fit there.  

Because any map into a product, first of all, is determined by the two projection maps pi 2 and pi 

1 the two coordinates.   So therefore, if there is a map it has to be this map. The first projection 

first coordinate has to be this one, this map. The second coordinate as this map and that defines an 

element of Z because that is taken as those points were in when you go to f1 they agree and f1 and 

f2 they agree. So, that is the construction and the construction and the uniqueness are over, all 

right. So, this is a very simple minded thing to begin with but it has wonderful properties. 
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The fibred product by the very definition is symmetric in . You can say, you can write here 

 or .  So I just omit having a notation for this one. It has some wonderful 

properties---I will use this diagram.   
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If  is surjective, then  is surjective. If  is injective and  is injective. If  is a homeomorphism 

then  is a homeomorphism. If  is a covering projection then  is a covering projection. If  is 

a G-covering,  will be G-covering. So, many topological properties of f1 will be reflected here. 

Of course, there are some which do not. For example, if  is a cofibration then  may not be 

cofibration.   

If  is a cofibration there is no guarantee that   will be cofibration. Cofibration will happen if 

we reverse all these arrows and then take the co-fibral product. Let me say something like co ok 

dual tallies when arrows are all reverse. So cofibration would not fit here. Fibrations is vibration 

this will be work of fibration. So let us verify a few of them, which I am going to use them also. 

Meanwhile, we will get familiar with this definition and the construction also.   
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Let us verify surjectivity.  is surjective I am assuming. I want to show  that  is surjective, what 

do I do? Take a point .   Pick up the point  which sits over , i.e., 

  and   is surjective. Therefore,  there is such a   Now, by the 

very construction, .  And the second projection element  is  Starting with any 

,  I produce an element in  such that  of that element is .  So,  is surjective all right. 

Let us verify the injectivity which is slightly little lengthier, one line lengthier. Suppose  is 

injective,  I want to show that  is injective. So, pick up two points in . How will they look like? 

.  Suppose  of them  are equal.  What is the meaning of that? The second 

coordinate  must be equal to .  We have to then conclude that first coordinates are also equal.   

But what is the meaning of these points are inside ?  They are not arbitrarily elements of  

right?  That they are inside   means that   Therefore, if you start 

with  which is equal to   but  and  it is equal to  which is turn is equal  to 

  But  is injective is our assumption. Therefore,  from which we conclude that 

 So, we are done.  

 

In particular, if  is a bijection then   will be a bijection.  
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So, let us go little further now.  Suppose  is a local homeomorphism. Then I have to show  is 

a local homeomorphism. So, start with a  point  in .  I must produce an open subset of  

restrict   on it,  that must be a homeomorphism on to its image in .  For this  I have to find an 

open subset of  and intersect it with . For that,   first of all I should  use the fact that  

is a local  homeomorphism. 

So, I look at .   has a neighborhood  in   such that  is a 

homeomorphism and  is open in .  That is the definition of local homeomorphism.  Then put 

. So, that will open in . Now, I have two  open subsets, one , another   

open respectively, in  and . Therefore  will be open in .  Intersection with  

put   That will be an open subset of ,  and it contains the point  why? 

Because first of all  and you look at  is in V and is equal to   That imples that 

 

Claim is that this  has this required property, namely,  is a homeomorphism. Now, 

first thing to observe is that  the bijectivity of this map  follows from the bijectivity of   

, exactly as in the previous two steps. Earlier  was assumed to be bijective on the 

whole space   there.  Here you restrict  to   . That instead of ,  use  and  

respectively.   Carry out the  same construction, the new   will now become the old   intersected 

with .  That is why the step 1 and step 2 are valid here also. So, bijectivity of   
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follows by bijectivity of  Now, we have to show that it is a homeomorphism inverse 

is continuous that is what we have to show. So, look at  which is the inverse for this   

 is a homeomorphism  to , then this is the inverse of  and therefore,  continuous.  Using 

that, we define   by the formula   Automatically, when you apply 

 to this you will get back   So, this  will be inverse of . Why it is continuous? Because this  

second coordinative of  is just the identity map and the first coordinate is  , which is 

continuous. Therefore,  is a continuous inverse.  

So, we have produced a neighbourhood of each  on which  is a  homeomorphism  

all right. So, it is a local homeomorphism. Actually, this also proves that if  itself is a 

homeomorphism, then  will be a homeomorphism. So, that proof is also here. More generally, 

local homeomorphism implies local homeomorphism is what we have seen now.   
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The next thing is if  is a covering projection then so is .  In fact we claim that if you take an  

open subset of  evenly covered by  and  take its inverse image by  inside ,   that  open set  

is evenly covered by  So, let   be an open set, which is evenly covered by .   Claim is 

that   evenly covered by .  Suppose I prove this statement . Then  by the very 

definition of covering projection, you have an open covering of , consisting  evenly covered open 

subsets. Inverse image of those things will form an open cover for ,  each of them being evenly 

covered . That will complete the proof that  is a covering projection.   

 So, it is enough to prove this statement, namely, W is evenly covered. That means I have to  look 

at  ,  write it as a disjoint union of open sets such that restricted to any one of them   is 

a homeomorphism. What is  my source for this? Source is similar statement for .   
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Namely,  write   as disjoint union of ’s, where each  is open in ,  and   

is a homeomorphism. Let us put  to be the inverse of that. That would depend upon alpha right. 

So,   is the inverse of . 
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Then   because we have  Therefore 

.  being continuous, these are open subsets of . But I am 

restricting it to , taking  intersection with  on both sides. So they are open subsets 
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Disjointedness is still there because  are disjoint open subsets here.  So I have got a disjoint 

family. I want to show that each one of them projects homeomorphically on to this  under  . 

This part already follows from what we have seen in the local homeomorphism picture. What if 

the inverse corresponding inverse use this  to get the corresponding inverse, just the way I have 

done it here.  
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So, H alpha here, we would define as S alpha composite to f2 comma identity. So, that is what you 

have to do here.  
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So, just like what we have seen in the previous paragraph, it follows that  is a 

homeomorphism. 

(Refer Slide Time: 24:50) 

 

Now, we come to one of the most interesting part, namely, if  is a G-covering then  is a G-

covering OK?  If it is a covering, this is a covering it is already done. So, only thing is now we 

have to see that they are given actually by an even action of the group . Suppose  acts on  E_
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 evenly and  is the corresponding projection map from  to , which is  automatically a 

covering projection.    

 We claim that there is an even action of  on  such that this  becomes the corresponding 

quotient map. You cannot change   by the way. On ,  the maps   etc. are already defined. 

Once on   and ,   are  given respectively,  is already defined. So,  I want to claim that 

 itself becomes a quotient map corresponding to the action of G and therefore it is a covering 

projection.   

Not only that, ok the pi 1 from Z to E1, there are G action on both sides. This pi 1 becomes a  G 

map. Indeed, this extra observation will tell you what you have to do. So, this is more or less like 

a last part is more or less like a hint here for the construction of   action on .  
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So, we define the action of  on Z, obvious action. There is an action of  on  and we do not 

know anything about .  is just an arbitrary topological space. Therefore, take the action of this 

 on  via   the first factor, G   Now, suppose  is already inside 

.  Then when you act by this namely   this will be also inside . Why? Why it is inside 

? I have to verify that.  For that we have to check that   
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This is the condition.  But what is   Becasue  is a quotient map under  action, 

.  Therefore,  and  So, therefore the right hand side is inside Z 

if  is inside Z. So, this action of  on   actually gives you action of   on .  

That is the meaning of that this is well defined. Now, clearly  under G action, the second coordinate 

of  apoint does not change.  Therefore, the fibers of  are orbits. And they are precisely the 

orbits. Because  implies . That means   are in 

the same orbit.  And hence there must be a    such that  G  because they are  in the 

same orbit.  
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That just means that . So, this shows that the fibers of   inside   are precisely 

equal to the orbits  action on .  This just means that this map  is the  quotient map. Well tell 

me that the whole thing is quotient map but is the covering projection already that we have already 

seen. A covering projection is a open quotient therefore it is a open surjective that holds a quotient 

map. The fibers are correct but why it is a quotient map requires some explanation. But we have 

already seen that it is a covering projection.   
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There are slightly different ways of seeing that quotient that does not matter. So, what we have 

seen is that pi 2 from Z to E2 is actually corresponds to the covering projection by G action. 
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Look at the way we have defined, defined this action here, G of E1 E2 is G E1 E2. What happens 

to when you come to pi 1, pi 1 of this is pi 1 of G E1 ok which is G of just G E1. This pi 1 we see 

are the just G E1 which G of E1. On this side it is E1. So, pi 1 of E1 E2 operated by G is the same 

thing as G E1. So, this very definition shows that the projection map to pi 1 is a G action, G map.  
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So, this was last part here, projection of G map. So, I have taken that as a key, as a clue to define 

this action and it works, all right. So, these are the basic things that we need to explain our 

classification of G coverings. So, this is going to produce large number of G coverings. If we have 

one G-covering and any map into the base place, you can construct the G-covering on the other 

space.  

So, this procedure is precisely called, has a different name which is non-symmetric in the 

definition, in the idea. Because the role of f1, all  properties of f1 reflected in pi 2, f2 may not have 

any of these properties maybe just a continuous function. That is why the role is important though 

in the definition of the fibred  product f1 and f2 does not matter, which one does matter, that is the 

beauty of this.  
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So, we introduce a non-symmetric wording here, namely this is the point f1 f2 though the fibral 

product is symmetric in that, the role of f1 f2 are different. So, we shall introduce a terminology 

which is not symmetric in that sense, namely we shall call this map pi 2 from Z to E2 and the pull-

back of the map f1 E1 to B via f2 and denoted by f2 star of f1. You see this is a categorical notation 

which does not depend on the construction.  

Here we have heavily used the construction. But all these things can be done in categorical 

language without appealing to the construction. That will be taking you little more deeper. We do 

not have any time for that. Here we use the easy set theory which gives you all these answers 

easily. So, this map will be called the pull-back. The corresponding covering projection will be 

called pull-back covering projection. So, if you start with the G-covering E to B, I will going to 

use a different notation now. E to B is a G-covering.   
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There is a map, there is a map F from B prime to B, then I get a G-covering on B prime which I 

am going to write as f star of P. P is a G-covering, f star of p will be G-covering. What we have 

seen is if p is surjective, injective, local homeomorphism, covering projection, G-covering etc. the 

same is true for f star. Thank you. 
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