
Introduction to Algebraic Topology (Part-I) 

Professor Anant R. Shastri 

Lecture 52 

Examples   

(Refer Slide Time: 0:23)  

 

Today's topic is one special concept in covering space theory which is again very classical, we are 

only touching just the definition and a few simple examples, even the definition may vary from 

author to author. So, this part we are doing just by examples not much deeper study of this. The 

simplest model is when you are studying subgroup and its action of the group.  The coset 

representation helps you a lot, this is the kind of thing that we want to do in topology also when a 

group is acting on a topological space. However, the analogy stops there, we have to bring in more 

topology than choosing and arbitrarily picking up coset representatives. So, let me stop making 

comments. Let us first go through the definition and then see that  there are a few things which 

make sense.  
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Start with a group G acting on a connected topological space  . Let me just take for the definite 

sake, that the action is on the right.  Then a  connected subset   is called a fundamental 

domain,  if the following happens, namely, (I)   is the  union of all the translates of , (   is a 

subset of , you take all right translates , ; they must be covering the whole of . This 

is similar to the choice of right cosset, but there is no disjointsness here. (ii) The second part brings 

a little bit of disjointness, namely for any  in  the interior of ,   implies must be 

identity. In other words, the translates of the interior of   are disjoint. (iii)  The third point is that 

if you restrict the entire map the quotient map ,  restricted to the domain  that itself  

must be a quotient map.  

So, now we can see what is the idea, the idea is to cut down the top space X to something 

manageable, something smaller. If we insist on coset representations like they are all disjoint that 

is not possible because X itself is connected and that is not desirable either. So, we allow minimal  

overlapping namely in the interior, there should not be any overlap. On the  boundary there can be 

overlap and that will actually happen.  

The important thing is that since  is connected, we insist that  is connected. So, now I want to 

tell you that the definitions may slightly vary from author to author and situation to situation.   For 

example, if   is compact then you may want to choose  to be compact. Secondly, there is no 

uniqueness in the choice of , each person, depending upon the problem at hand whatever he/she 
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has to study,  may choose the fundamental domain differently. So, let us just study a few examples 

how it helps to understand the quotient space and the action of X on, action of G on X.  
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So, here is the picture which shows that if   is in the boundary of ,  its translate maybe also in 

the boundary.  But  if  is in the interior then its  translates will not be in the interior. So, that is the 

this is a picture that is all.  
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So, I have already told you condition one about, tells us that the quotient map is surjective because 

translates of this D cover the whole of X. So,   is a set of representatives which is like a coset 

representatives. Condition (ii) tells you that ,  D  is injective in the interior of . 

And the condition (iii) says that it is actually a quotient map if you take the whole thing.  
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So, let us take an example, the simplest example, all these examples are more or less familiar to 

you. The first example is    given by the action of the integers on  by translation.  

is the group, and   a subgroup of .  So it is like a coset representatives.  

So, what you want to do is you can take  to be  any closed interval which we have been doing, 

any closed interval of length 1. Then in the interior, there will not be any identification, when you 

translate, any interior point will  go outside the interval of length 1, but one boundary point may 

go the boundary point;  for  0 will go to  1 when you add 1 . So, that is the only point of intersection 

between the translates of the interval, close interval and itself, either way, either add or subtract 

only one of them that intersect. 

After that there are no intersection at all, this interval closed interval, this happens to be connected 

that justifies the domain, the word domain here is called a fundamental domain. But in this 

particular case, it is also compact, we did not bargain for that compactness, but because the quotient 

space which is the circle is compact, this was possible obviously, it is a fundamental domain itself 

is compact, the quotient which is a image of that will have to be compact, this is actually was this 
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remark was used in proving that the projective space is compact, let us come to that example then 

I will explain it again.  
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So, here is a comment that says that most of the very interesting examples come similar to this 

result contained inside R. Namely, what the, what are called  Lie groups, then inside that Lie group 

you are taking a discrete subgroup. When you take discrete subgroup inside a Lie group the 

quotient becomes a covering space projection and then we can talk about choosing a fundamental 

domain there.  To study what is happening to the action as well as the quotient space and so on.   
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So, this is the prototype of that example, since we have not studied or we are not assuming any 

knowledge of the Lie groups and so on,  we cannot pursue that angle more than that.  
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But we can take another simple example, simpler than the exponential function namely,   

or  ,  namely ,   where   is a primitive nth root of unity, which defines an action 

of the group .  If   , this action is nothing but   
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If  you are multiplying by  or  and so on. So, this is a group of order n,  we have studied  

its action on . The  quotient space is again .  Same thing happens in  also--- the polar 

coordinate representative, the norm of the vector does not get affected because zeta is of unit 

vector, is of unit length.  

So, what will the fundamental domain for this action on ? You will have to choose a sector of  

angle .  For example, take the positive real axis  and then take another line passing through 

origin which makes an angle  and everything lying in between that is called a sector, all 

.  

So, that forms a fundamental domain, in the interior will not be any identification, but on the 

boundary the whole line the X axis, part of the X axis, positive X axis is turned into the next line, 

you keep turning it n times you will come back to the real axis.  

(Refer Slide Time: 12:03)  

 

Next example is a little more interesting or a little more complicated.  Start with the 2- dimensional 

vector space ,  pick up any two vectors  as basis for .  Now, you take the subgroup 

generated by these two vectors, the  abelian subgroup not the vector subspace.  They generate the 

whole vector space , but we take the  subgroup generated by  these two elements.   That will be 

a free abelian group of rank two. So, I am writing   for the set of all   elements of the form 

 where  range over all integers.   
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So, that happens to be a discrete subgroup, you can mark these things.  Starting with u and v, make 

a parallelogram. So, you get 4 vertices of the parallelogram, keep translating this parallelogram 

both up and down right and left and so on. So, you get all those lattice points. So, that is the 

subgroup. 

Quotient is just the quotient of one of these parallelograms, any one of the closed parallelogram is 

good enough to cover the entire thing and the quotient is again a covering projection indeed the 

quotient space is nothing but homeomorphic  again. Just like if you have taken the the 

special case   or any two   perpendicular vectors.  

The importance of this one is that no matter what your choice of u and v that they must be 

independent that is all. The quotient is always  homeomorphic ,   the torus.  

But remember that  can be thought of as a complex plane with complex structure. Then, there 

is a way to put a complex structure to the torus. The structure  will depend on what vectors you 

have chosen, the basis  vectors you have taken. Actually,  it will depend upon just the angle 

between these vectors. Depending on the angle, choice of the angle, you will get different complex 

structures on the torus. They are all called elliptic curves. In fact, they are all smooth elliptic curves, 

they are all of them smooth elliptic. 

This is a very classical subject and extremely important in other areas of mathematics also. Like 

this was used in solving Femat’s last theorem also. And this is classical subject, which  goes back 

to Weierstrass, Abell and so on, the study of the elliptic curves.  
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And it goes back to Riemann also.  You know that these are examples of Riemann surfaces--not 

the first one, the first one is a sphere, the next set of examples, the simplest examples of surfaces 

surfaces  with a complex structure.  
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So, beyond that, I cannot touch this one, this maybe just a motivation to study these things because 

the study of elliptic curves itself is a very very deep subject one can study the whole thing for the 

entire of ones life. 
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Now  we have gone from  to .  We generalize this further  to all dimensions  

All that you have to do is to take n independent vectors ,  any basis  for ; that will 

give you a subgroup of , an free abelian subgroup of rank n, that will be a discrete subgroup.  

The quotient will be again a compact space and that is nothing but  homeomorphic to 

  

Now, what will be the fundamental domain here? Once again you look at the box, the box given 

by all these vertices  etc,  your n vectors and the origin.  Just like a parallelogram in 

,  you generate the box, parallelopiped, that will become a fundamental domain for this action.  

In dimension 3 it would be a, this is like a cube; if you take vectors to be perpendicular each other 

and of same length, then it will be actually a cube.   

Another  more familiar example which we have studied already is projective space, projective 

space , we have defined first as the  quotient of ;  but then you can restrict the quotient 

map to  to get a quotient map again.   is  a fundamental domain in a trivial way because  

I has no interior in .  But  is again a quotient of  by the action of  So, to get 

a fundamental domain for this,  all that you have to do is cut it down the sphere in half, take only 

the upper hemisphere then the interior there is no identification, on the boundary X going to minus 

X is still identified that is allowed.  
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So, this was used in understanding the projective space inductively, I have discussed this one 

earlier. For example, in the case of n equal to one this will immediately tell you that the projective 

space p 1 is again homeomorphic to S 1 because then the fundamental domain is just an arc, the 

upper hemi circle and 1 and minus 1 are identified. When you identify a string, the endpoints are 

identified by single point what you get is circle. 

And that will give you a picture of  and it will also give you a picture for .   is now nothing 

but a disk being attached to the circle via the map ,  namely,    and  on the boundary are 

identified. So, that is the picture of  .  Unfortunately, though it is easy to describe, t you cannot 

construct a model  remaining inside , because     is not embeddable in .  
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The next example is of more interest to topologists.  So, Klein bottle is again a two dimensional 

thing. So, I will explain this one because it seems that many people have wrong conception of what 

a Klein bottle is. Consider the subgroup G of rigid motions in . What is a rigid motion? Which 

preserve the distance in  --- translations, rotations and such things. The group of  rigid motions 

in   , generated by following 2 elements.  One is  just the  translation along the x- axis,  

and  y remains the same. The second one,  the first variable is reflected  in the point ½. So, it is 

given by ,  and the second coordinate shifts y, ie.,   So, this is called a 

glide reflection, gliding along the y-axis reflecting along  a line parallel to the y- axis  and passing 

through x=1/2.  So, such things are called glide reflections in complex analysis, it is a rigid motion, 
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it can be thought of as   composed of two things namely one reflection and then and translation, 

reflection is also a rigid motion after all, only thing is it is not orientation preserving, so such thing 

is glide reflection.  

Put     the group generated by  and 

. 

So, look the rigid motion     So  is   a translation 

along the y-axis. Hence, if you take  T, which is transitional along x-axis and     which is 

translation  along the y-axis they will   generate a subgroup  isomorphic to . By iidentifying 

 with the standard basis vectors , the group  can be thought of as a subgroup of 

.  The quotient would be    

But now, I am going to take the subgroup  generated by  and ;   will be in a 

subgroup of that. So, now, I am going to consider the quotient of   by a larger group, of which   

=   happens to be a subgroup of index two.  So, it follows that H is a subgroup of index 2 in 

this G.  Check that the action of G on  is even.  

So, this is fairly easy, all that you have to do is take the neighborhood of any points say  for 

example, and take a small enough neighborhood, very small enough neighborhood just that either 

reflection or shifting does not intersect with it, that is all. So, details I will leave to you. So, check 

that the action is indeed I have written already. So, you can check that the rectangle   

is a fundamental domain.  So, that will give you a fundamental domain for this action.   
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So, here is a fundamental domain for the action of  and the other one   is a fundamental domain 

for the action of .  Only along the border there is some overlap and identifications. Look  here, 

along the x-axis points are shifted by 1 in both the actions.   Along the y axis what happens? when 

you  use the torus action, clearly there is shift by 1.  In the action of  howevr, shift is by laf and 

there is a  rotation as well. So, what you have to do is when you come here, this will be 1 minus x, 

this is half, half will go to half, but 0 would have gone to 1, say one third would have gone to two 

third and so on, this is coming this way. So that is why I am coming this way, and I am going this 

way and I am coming this way.  

Of course, engineering here have been different, but I am shifting also. So, a point here would have 

gone to point here and point here would have gone to point here on the line y could execute half 

this will be just shifting from here to here, action is like this, and this, this is shifted like this. So, 

identification is precisely this line segment is identified this one, after rotating not just like that, 

this one is identified as it is, you can perform this one first, then you get a cylinder, then you 

perform and indentifying this one, you can just bend it down and to do it like this, you have to 

bend it and go inside and glute lactase and that is why you cannot perform this one remaining 

inside .  So, this is a Klein bottle.  
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One knows that Klein bottle cannot be embedded in .  you will learn this in an advanced 

algebraic topology course that it cannot be embedded in , it is not a part of this course, you 

cannot handle that one.  Put  , .  Consider ; I am giving you a 

embeddingof the  Klein bottle in ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~; 

.  

Check that  and  for all   
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It follows that  will quotient down to define a map  from  Klein bottle into . That map, you 

have to show, is injective. Once you show that it is injective that is enough.  because one can show 

that the quotient is a compact space,  and hence   is automatically  will be homeomorphism onto 

the image.  
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So, this is elementary checking, but many people make mistakes here, elementary mistakes. So, I 

have written down this one, so please check that I have not made a mistake. That is all.  
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And rest of the thing that I have put here, we will discuss it some other time. They are all concrete 

samples. So, they do not play much role in the theory that we are developing, but they are good 

for understanding what is going on. So, we will cover it  some other time. Thank you. 
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