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Continuing with the construction of simply connected covering spaces; recall that we made a 

definition of semi-locally path connected, semi-locally simply connected spaces. Then we studied 

the path space over such a space and showed that evaluation map is continuous there and it is an 

open mapping also. So, this lemma today is a key to what we  should expect, what we should 

expect? So, where to look for the simply connected covering space for a given X? So, X is locally 

path connected and connected space. Suppose   is a covering projection with  path 

connected. Take  such that   

Then the induced map  namely, a path  going to . So, that is the 

map induced by p on the path spaces; this itself is a homeomorphism. Now, this lemma is not 

essential for the proof or for the construction of simply connected covering space. But it tells you 

where to look for the simply connected covering space. It tells you that it does not matter , 

whichever covering space you take, its path space is the `same’ as the path space of  So, you do 

not have to construct the covering  space afresh; it is going to be a quotient to the path space of .  
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Therefore, the simply connected  covering space if it exist, must be a quotient of the path space 

itself; path space of X itself. So, this is the lemma which  directs you to for that one. So, the proof 

of this lemma that `homeomorphism’ is essentially to proving that this p star is also an open map; 

which is somewhat similar to that evaluation map is an open mapping that we have done. So, I will 

presently skip the proof of this one and go to the  construction of a simply connected covering. If 

time permits we can comeback to the proof of this one at some other stage. So, here is a proof but 

I will skip this proof now; the proof has a nice diagram also here and so on. 
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So, as I told you, we have already proved that evaluation map from the path space to X is an open 

map. Open surjective, because X is path connected; therefore, X is itself can be thought of as a 

quotient space of . From the above lemma that just now which we skip, it follows that 

every covering space of X is also a quotient of . Why?  is homeomorphic to 

 and  is  a quotient of .   Therefore,   is also quotient of . Therefore, 

let us work out, whatever we want to do with  itself.  That is the idea.(Refer Slide Time: 

05:03) 
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So, here is the final proof, so we start proof of theorem. Start with a semi-locally, simply connected 

space ; I am just repeating this thing. Take a point , that is fixed point, base point of .  

And this capital P ,bold P, let it denote  Again and again we do not have to write as a big 

symbol that is all. This space is given the compact-open-topology, remember that also. We now 

define an equivalence relation in P, by saying that omega is equivalent to gamma, (remember these 

are paths starting at x naught), if and only if these two paths are path homotopic. 

In the other words, omega 0 is already gamma 0; but end-points must be also the same. And I the 

two must be path homotopic, namely end-points must be fixed.  Path homotopy is an equivalene 

relation, remember that.  Let  be a quotient space of all  equivalence classes and let   

be the quotient map.  

So, what is the difference? The difference is in the definition of fundamental group, we took the 

loops at a single point. Now, we are taking all paths; the end-points could be, the other end-point 

cold be anything in the space of in inside X, that is a difference. So, this is something much useful 

than just the set of pi1 of X, x naught; it is not a group either. This is given a topology now; what 

is the topology? Topology coming from the compact-open-topology of the path space, as a quotient 

of that; that is,   is a quotient space of P.   
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So, by definition, these two are path homotopic means the end-points must be the same. Therefore, 

it follows that the evaluation map, remember, is just the end-point; so that  factors through the 

equivalence classes. On the entire equivalence class, it takes the same value; therefore,  

factors through the quotient map  like this and gives . X bar to  Remember we have 

to construct not only the space, but also the projection map. So, this p is nothing but e factor 

through the quotient.   Take any class here; it is represented by any path; the endpoint is 

independent of the representaive path, and take the end-point here; so that is p of that. So, p of this 

is also just the endpoint, but it is independent of the path class. Now, one easy thing here is that p 

is an open mapping, because we have shown that e is an open mapping. Taking open set by the 

very definition of quotient space, inverse image is open. The image of that is same thing as the 

image under p of the original open set here. So, e is open, so p is also open. We have to show that 

p is a covering projection; we have to show that  is simply connected. So, these two are the task 

now for.  
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So, let us start with  be any path connected open set in , such that inclusion induced map on 

the fundamental group   is trivial. Such an open subset around every point is 

guaranteed by the hypothesis of semi-locally simply connected. Just for being a bit  economical in 

with the words,  let us call some such a set   ambiently 1-connected. It is not simply connected by 

itself, it need not be. When you pass to the whole space, its fundamental group becomes trivial that 

is the meaning ambiently 1-connected. So, what we know is that X is covered by open subsets 

which satisfy this property.  they are ambiently 1-connected. We claim that if V is ambiently 1-

connected, then V is evenly covered by p; and that will finish the proof that p is a covering 

projection. The idea of the claim is clear, so we have to execute this one now.  
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Given a path  starting at  that is an element of , such that the endpoint is inside , (  is chosen 

to be some open set, which is ambiently 1-connected), we are going to define a set of subsets of 

; what are they? Consider the set .  This notation is because 

this is going to depend upon V as well as the class of omega. The class of omega is an element of 

what? is an element of  remember that. So, all such classes they are also elements of X bar, which 

are omega star omega prime; path is which look like omega star omega prime. Where, in this 

omega prime is a small loop, small a path completely contained inside V. 
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Remember omega to begin with is a path from ;  to .  is what?  is some point of 

. Then I am taking this class; this class is an element of .  I am extending it to   by 

some path  within ,  which starts at   Look at all those that collection is going to be  

So, the claim is so I have here picture here; start with omega like this, which ends inside this open 

subset V. Then I can extend it by some omega1 or omega2 and so on; these extensions are 

completely inside V. So, this picture I keep referring to again and again; so we have defined V 

omega like this. 

(Refer Slide Time: 13:05) 

 

Then  ,   is an open subset in ,   is some open subset of . And it is a union of 

all possible ’s (  is fixed)  whereas  ranges over all possible paths with the condition that 

  Remember  is nothing but the end-point; the end-point must be inside V. So, if you 

have the point is already inside V, and then you are connecting it with another path within V; the 

end-point of that will also inside V. 

So, this p inverse of V is union of all these things so obvious. 

Second part is: take any  class ,  for some element of . That would imply that  

So, this is just like in group theory, how group theory wherein  is a subgroup of  then if  

then its right-coset  will be  itself; it is of that nature. So, let us see what happens. 
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Suppose  Then   and hence . This means 

. By symmetry  and hence equality holds.  it is omega star omega1 for some 

some omega1; suppose, this is tau. Now, look at V tau; V tau is what? All those paths coming up 

to here; and then paths will go within V from this point. But I am taking the homotopic classes of 

path; therefore in particular after going here, I can comeback from this path up to this point. That 

will be homotopic to omega1. Therefore, V tau is contained inside omega1, and V omega1 is V 

omega is contained inside V tau; so these two are equal. So, this is completely trivial. But if you 

look at the picture it will be that nature. 
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So, this will happen, either some elements here when both the classes are same; or it just means 

that V omega and V tau in general are disjoint. Either they are equal or they are disjoint; if they 

intersect, they must be same. This is like the cosets, cosets which is inside; cosets inside of a group. 

V omega intersection V tau is non-empty would imply V omega equal to V tau. Therefore, what 

we have proved it p inverse of V is a disjoint union of some v omega’s. So, you see this is what 

we wanted out; then I want to say that each of V omega comes to V, which is obviously  by a 

homeomorphism. Namely, p restricted to V omega to V is a homeomorphism; this is what we have 

to verify. 
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So, V is path connected, it follows that  is  surjective. Once a path has come inside 

omega has come inside V, from there I can join it to every point inside V. So, that gives you that 

p is surjective, from V omega to V. Let us show that this is injective. And this is where, so far we 

never used this fact, namely,  is ambiently 1-connected. So, far we not, where the injectivity, we 

used that one; having said that, I can leave it that as an exercise; but now let us verify this one. 

Suppose ,  tau1 and tau2 are two elements in X bar. 

Actually, I should assume that they are inside V omega; where tau i is inside V omega. That means 

what?  where  are paths in .  I  am assuming that  which 

means that their end-points are the same. We can go back to this picture modulo that these two 

end-points here of omega1 and omega2 are the same. What does that mean?  is a loop  

inside .  Therefore, inside , it is null homotopic;  But then 

 Therefore  

This omega followed by omega2 is the same thing as omega followed by omega2; all the way from 

omega1 and come back to omega1. It just means that tau1 is homotopic to tau2. These kinds of 

things we have seen several times; so, I repeat this. So, omega1 equal to omega2 means they have 

same end-points. I check from pi1 of V to pi1 of X is trivial; so we know that omega1 composite 

omega2 inverse is null homotopic. The class is 1; therefore, tau1 which is omega star omega1 is 

omega star omega1; I can put omega2 inverse star omega2, because this is this is trivial. But, now 
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put the bracket this way, omega1 star omega2 inverse is trivial; so, this cancels out. What is left 

out is omega star omega2, which is tau2.  

 

So, we have got   a bijective mapping; it is already continuous. We have shown that  

it is an open mapping also.  
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Only thing what remains is  to show that each  is an open set in   So, that that is that is that 

is remaining; then proof that  p is a covering projection will be over. Because we have to show that 

p inverse of V is disjoint union of open sets; each of them coming homeomorphically onto V. So, 

everything else is shown except V omega must be an open set. So, V omega is where V omega is 

in X bar; X bar is a quotient space of p. How to show something is open in the quotient space?  

We have  to show that  inverse of that set is open in  This is the definition of quotient topology. 

So, I have to show that  is open in P.   Take any   Around that I shall 

produce an open set contained inside phi inverse of omega. Yes or no? For every point inside this, 

we should produce a nbd contained    What are open subsets in  the  compact-open-

topology?  We have to produce that some basic open set namely intersection of Ki, Vi et-cetera 

has to be found out now. So, watch this look at this lambda, it is a path from    to some point 

inside V. Because  belongs to  just means   
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So, this entire curve  can be covered by finitely many ambiently 1-connected open sets 

; the last Vn  I can choose it as V itself. In fact, I could I can come back from 

that side; start with V and then cover some other portion some other portion. Actually, we can take 

a infinite covering first and then take a finite covering, because the whole thing is compact, lambda 

is compact.  We  get a partition   of the closed interval [0,1]  such that 

.  

So, cut it cut the entire lambda and cover it; so then then cut it into partition into V sub-interval. If 

W denotes ,  the set of all paths   starting at  and  such that 

, then it is a basic open set by definition in the compact open 

topology for P.  for every i1 to i; by then definition of the compact-open-topology, this W is open. 

So, that W is an open subset of P, and lambda is to start with lambda satisfy this property; so 

.  

Claim is that  = . (The last equality follows,  because we started with 

) So, we have to show the same homotopic property  for all such  inside W. So, here is 

the last picture.  
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This was your  which you covered by these evenly covered open subsets 

 . This  also has the property that  for all  

  Join   to  by a  path  inside   Denote the restriction of  

(respectively,  to the interval  by  (respectively,  by . It follows that 

 is a loop in  and hence is null homotopic inside   

This way all that you will get is this path is homotopic to this path, composite this back going back, 

composite going back, composite going back and so on; exactly, similar to the Van Kampen’s 

theorem that we have proved in the beginning. To prove a Van Kampen’s theorem is intuitively 

works. Introducing in between paths here, so it follows that this lambda prime is homotopic to this 

lambda. And particular lambda prime or lambda are arbitrary it says; it applies to omega also. So, 

they are all homotopic to omega star or something. So, this completes the completes the proof of 

that p is a covering projection.   
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What remains is the proof of simply connectivity of  So, let us complete that one. Connectivity 

follows because P is connected and  is a quotient map, there is no problem. It is path connected 

because P is path connected and it is quotient map.  

To show that  is simply connected, let    be a loop at the constant path at .  We have 

to choose the two  end-points to be the  base point of  which is mapped onto    So, I will 

choose the constant path   of  and its   homotopy class to be the base point for  

So,  is a loop, the loop of loops remember that, in   not in . In order to show that this null 

homotopic in ,  by the injectivity of ; (  we have proved that  is a covering projection and 

therefore,   is injective),   you go down to  and  show that  

   is null homotopic in .  Let us write  We have to prove that  this is null homotopic 

in X; so we are using the partly proved statements to prove further things here; this is what. So, 

now what is this lambda? Lambda is  map from  to ; then we have come here. That  is a loop 

at   has to be used.  
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So, let   be  defined by the formula   This map we have considered 

earlier to show that P is  contractible.   

So for each fixed t,  and for s=0,  we have   That means 

first of all, each  belongs to P. We check that   is   That is 

, e being the end-point map.  Now we have   Therefore, 

  Thus, we havetwo  lifts of  in , one is  and another is  Moreover, 

 Therefore, by unique path lifting property of the covering 

projection , it follows that this  is nothing but   this path here.  

So, we took  in ,   came down  to X via ,  call it  then we have identified  what is this 

original  in terms of .  It is   This    is now all the way inside .  So, you see we have 

used the property that any arbitrary path  inside  can be lifted to the space    very easily. And 

when we quotient it out, the lifting property is still retained by the covering projection . This is 

what it happening. 

So, here we have used a lift of  so this omega is lifted to  in .  And that under quotient map  

it goes to  

So, most of it is like tautology; actually, all several construction in mathematics, when you have 

in a blank where to go for this tautological one. In the beginning of construction of real numbers 

775



out of Cauchy sequences of rational numbers. You want every Cauchy sequence to be convergent 

what did we do? You took equivalence classes of Cauchy sequences, and declared them as real 

numbers over. Now, Cauchy sequence of Cauchy sequence is convergent is what we have to show; 

so, this proof is similar to that. We want all kinds of lifts of paths inside the simply connected 

covering. 

So, you declare the covering itself to be set of all paths; but that is too much, so you have to do the 

equivalence classes. So, it is in simplistic language this is I could have taken the example of metric 

completion of a metric space; or construction of real numbers. And this similar to that; so, let us 

stop here. Let us comeback to other things in the next session. Thank you.  
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