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Let us begin defining composition of paths. Fix any topological space, and  take two paths in it.  

The first path ends at  , the starting point of the second path is same thing as . So, 

. In that case, we will define  ---- 𝜔  followed by . This is not a composition of 

functions, it is not as if X to Y, followed by Y to Z.  Both  and  are from  to X.  

And what we need is 𝜔 (1) must be equal to (0).  Then we can define  . This 𝜔 star 𝜏 is 

defined exactly the same  as we have defined  the homotopy concatenation of two homotopies so 

that is precisely what we are going to do here, namely in the first half of the interval  0 less than 

or equal to t less than or equal to half,  we will define it as 𝜔 , but double the speed, (2t).  In the 

second half again, we are defining it as ,  double the speed and origin has to change--- start at  1/2 

and end at 1. Therefore, it is 𝜏 (2t − 1). When you put t equal to half in the first one, it is 𝜔 (1) 

and then second one it is (0) and those two points are same. Therefore the right hand side will be 

a continuous function. What is its starting point? It will be 𝜔 (0). What is its end point? It will be 

𝜏 (1). So, this is the meaning of composition of two paths.  
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Usefulness of this operation is essentially due to its path-homotopy invariance. What is the 

meaning of this? Let us see. Suppose you have 𝜔 1 homotopic to 𝜔 2, (here  homotopy is actually  

path homotopy) and 𝜏 1 homotopic to 𝜏 2, then the compositions, corresponding compositions will 

be also be homotopic,  i. e., path homotopic. Remember, 𝜔 1 homotopic to 𝜔 2  always means 

that the endpoints of 𝜔 1 and 𝜔 2 are the same.  

𝜔 1 ∗ 𝜏 1 can be defined means that the starting point of 𝜏 1 is the same thing as endpoint of 𝜔

1. The same thing should be true for 𝜏 2 also. Starting point of 𝜏 2 will automatically be equal to 

endpoint of 𝜔 2, because the  end point of 𝜔 2 is the same as endpoint of 𝜔 1. So, the composition 

𝜔 1 ∗ 1 is defined will imply that 𝜔 2∗ 2 is also defined.  

Not only that, this homotopy will imply that the compositions are also homotopic to each other. 

How does one get this one?---by just putting these two homotopies together just like the way we 

have done it in the case of the homotopy classes of maps.    
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So, H is a homotopy from 𝜔 1 to 𝜔 2, G is homotopy from 𝜏 1 to 𝜏 2.  In the first half, you define 

it as H, H(2t, s). Do not worry about the second coordinate at all. Keep the second coordinate as it 

is. It is the first coordinate t which defines a path function. The second coordinate keeps changing 

the paths each time. So, each time you double the speed,  H(2t, s) and G (2t – 1, s),  exactly the 

same way as we have defined the compositions. You can easily verify that this capital F (t, s) will 

be a path homotopy from 𝜔 1∗ 1 to 𝜔 2 ∗ 2.  
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Next lemma tells us about the basic algebraic properties of path compositions, which I have already 

summed up in the last module. If you understood this properly this part is automatic, whereas, it 

may not be that you have  understood it. So, let us go through it again. That remark which I have 

made in the last module is enough to talk about this associativity, identity and inverses, let us see 

how.  

So, let us call the first composition 𝜔  ∗  (𝜏  ∗  𝜆). So, I have put the bracket on the second ones. 

Let us call it  . Suppose that is defined then other one --- (𝜔  ∗  𝜏) and then ∗   𝜆𝜆-- that will 

be also be defined, call it  . And these two will be path homotopic, that is  the associativity of  

path composition.   

Obviously,  and  .𝛾 will be completely different, because in defining , look at what we have 

to do, the first half of the interval will be occupied by  and the second half of the interval to be 

shared between 𝜏𝜏  and  ,𝜆 whereas, in the definition of  ., the first half of the interval will be 

occupied by 𝜏    as well as 𝜏 ,   - -shared between   and𝜏 ,   which means only ¼ of the interval 

will be for 𝜔  .  

Therefore, it is obvious that    as a function, is not equal to  . But a pleasant surprise is that it 

is path homotopic to  . Similarly, if you compose with the constant path on this side whatever 

path we get is path homotopic to the original path. Namely, take any path 𝜔    starting at, say, at 

the point x, Cx be the constant path at x you have taken. So, I can take 𝜔    ∗ Cb , where b is the 

endpoint, is homotopic to 𝜔   . Also same with Ca ∗    𝜔, where a is the initial point of    𝜔; --

-a is     𝜔(0) and b is 𝜔   (1).  

So, one side we have composite with the constant path Ca,--- on the left hand side, on the right 

hand side constant path Cb. So, these are homotopy-identities for the operation which is path 

composition. Moreover the inverse path, the so called inverse path, namely the one obtained by 

tracing the same path in the reverse direction. I have denoted it by omega underline, , i.e.,  𝜔  

 (1 − t), you have to compose it with 𝜔 (t), you will  get constant path at a. If you take  first 

and then take    , then it will be constant path at b. Wherever you start from and  go to the other 

end and come back by the same path, it will be as if you are all the time at the same original point. 

So, these are the three statements, all of them can be proved, in fact have been proved by one single 

remark namely that you can get all of them by different parameterizations.  
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Different parameterizations of the same path that is why they are path homotopic. Left hand side 

and right hand side are different parameterizations except the last one- (i) and (ii) are just different 

parameterizations of the same path. So, let us see why  all these homotopies have nothing to do 

with actual 𝜔 and actual space X. It is the property of being   defined on a closed interval.  

Everything is happening inside of the interval. You should understand that one. So, this is a very 

simple idea, but it is the best we understood that way. So, instead of making it as if it’s some 

mystery, we will just write down the formulas for each of them and be done with it. That is the 

way many books do read, I have done it for your sake.  
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So, having explained this path and how it work, so I am going to tell you,  I already told you that 

the first path occupies 𝜔 occupies half the interval first half of the interval and the second half of  

the interval is shared again between 𝜏 and 𝜆. So, these things we will use and write down the 

homotopies.  
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So, here are clear homotopies have been written down. First let me tell you how does one get this 

one.  
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This is the picture. Look at the bottom, in the first there are 3 squares here, , ,  , for 

three different cases, we have three different statements there. The first one is associativity 

and then  . So, at the bottom, this is your  perhaps, in the previous notation.  
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At the top, it is  .  So, that is the definition. 𝜏  𝜆 will be defined first and then 

compose it with 𝜔  on this side.  

 

So, this is all, this is all you get-- the first half of interval will  be 𝜔  and the second path will be 

shared by  and . So, what do you do? You join them. this 1/4 to 1/2 there, this 1/2  to  3/4 there, 

and 0 to 0 and 1 to 1 like that.  In between homotopies, say at t equal to s, at this point t equal to s 

sorry,  s is equal to s0, you have to go, not to one fourth here,  but you go up to this point by  , 

then follow by   𝜏 and then  𝜆. By the time you come here, instead of one fourth, you would go 

upto  ½, i.,e, up to half, you would be taking 𝜔𝜔   then 𝜏   and then  𝜆 like this.  

So, this is the picture. The actual values of the coordinates are determined by the intersection of 

these two lines that is all. So, this line is given by some s equal to s0 joining some point t0 here to 

t1 here.  
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So, what do you get by doing that is the formula here----this one. I have explained (i)  here.   
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Similarly the (ii) also. So, what I want to do is tell you how this is-- the last one. This is  

. So, what path you have  does not matter--- how it goes up to half  and goes back. But you 

know that any two paths, which have same endpoints inside  to  ,  they are homotopic as path 

homotopies  keeping the end point same. So, here what happens if I take 𝜔  and come back by 

it will have the end point and the starting point equal to 𝜔 (0).  

If I compose  with  ,  starting point and the endpoint both of them will be same the end point of 

.  Therefore they are homotopic to the constant paths at the 

respective points. Over. You do not have to write any formula because 

once you have proved, given one single formula remember A(t,s)  was 

defined as (1− s) 𝛼(t) +s t.  

This showed identity map is homotopic to any map . So, any two maps are homotopic. -- the same 

way, 𝛼 and 𝛽 two maps : , endpoints are the same whatever endpoints. So, (0) equal to 

say 𝛽 (0) and 𝛼 (1) equal to (1). Wherever they are in the interval, then you can just take (1− s) 

(t) + s (t) that ensures that  and 𝛽 path homotopic  So, that is the thing that is happening in 

the last one. If you have difficulties in seeing this way, there are just formulas--- you just verify. 

How the formulas are obtained?  
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I told you these are the pictures will tell you how to get the formulas. We will have a session in 

writing down these formulas later on rigorously at another point not at this point. What we have 

done here you can see that  up to s by 2, this is the function. So, here what is happening? Let us go 

back look at this one. 
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For s equal to s0, half of this distance, whatever this distance, half of that  will be one thing. After 

that it will be something else. See up till here, then it is this part, then you have reached. This  is 

constant path at a, this is your . As the homotopy keeps taking, it will not go all the way at all. 
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The first time  you go all the way to the other point and come back. After half the time, you go 

only halfway and come back. At the final time, you know, you do not worry at all you stay there 

all the time. That is what this homotopy is doing-----  is null homotopic.   
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Now, let me tell you a few things about why interval [0, 1] and so on. It is interesting to note that 

during these homotopy entire action is taking place in the domain itself and so, the proofs that the 

composition etc, etc, do not depend upon the actual paths, do not depend upon the space X. 

Because of property three in the above lemma, many authors use the notation 𝜔 . After 

verifying this one, we can also do that, but the inverse is the more confusing, it is not the same 

path, it is up to homotopy.  

And that too, not as a functional inverse nor  1/  ...𝜔 and so on. Those things do not make sense. 

So, we should also use this notation, but you have to be careful with it. Some people use even  

−  𝜔 and that is very much valid because in integration theory, if you integrate on the reverse path, 

what you get is the negative of the original integration. So, many notations are there, they are all, 

they have their own justification.   
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Intuitively, any continuous map, from any interval [a, b] should be called a path. Why restrict to 

[0, 1]? Why interval the unit interval should be why, why all the time? So, this is what you should 

have done, some people try to do. Our definition of a path as a map from the closed interval causes 

a minor irritation. Namely, if you restrict a path 𝜔  :[0, 1] →X  to a proper closed subinterval it is 

no longer a path in our definition.  

Restriction should be also be a path. You have traced a path, half the path is also a path in that 

way, but in our definition, we have to reparameterize it to make it a function look like as if from 

[0, 1] to X. So, some people object. They say this is not a good definition. When  people object, 

you ask them to give  a better definition, it is just that. So, it is true that if you restrict to [0, 1], 

start with 𝜔  :[0, 1] →X,  just take the restricted function on [0,½], is it a path? that function is 

not a path in our definition. isn’t it?  

Note that composition law had to be defined after re-parameterization only. Even if we adopt the 

more general definition there may be some other problem. So, if you take [a, b] arbitrary and    [c, 

d] arbitrary, so 𝜔(b) is equal to 𝜏(c), then what is the domain interval for 𝜔∗𝜏 you take? Do you 

take [a, b] or [c, d] or [a, b] union [c, d]; [a, b] union [c, d] may not be an interval, even if they are, 

there may be more overlapping than just the endpoints.  
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So, arbitrary intervals again need to be  converted   into some standard intervals and then only you 

can compose them. That is a point I mean--- it is not as if the interval [0, 1] we have taken is at 

fault. Strict associativity law always fails. Similarly, the constant path is not a strict unit. Indeed 

there are a few different ways to avoid some of these difficulties, but some other difficulties you 

will acquire, we shall discuss such a thing, I have given you an example in a form of exercise,  

later on.  

So, what I want to say is no matter what kind of definition you take, there will be some problem. 

For example, I will right now tell you instead of the closed [0, 1], you can take the entire real line, 

but then you want that your path should  end somewhere otherwise you know that a non compact 

thing  will not be called a path. You should have a starting point and an ending point therefore 

what we do? ---take the entire real line, but take only those functions which are constant after a, 

after some point after say 1 and before 0.  

So, everything less than 0 will be mapped to  𝜔 (0)  and everything bigger than 1 𝜔mapped to 

(1). ---  𝜔 (1) is equal to 𝜔 (t), t bigger than 1. So, you put that condition. You understand instead 

of [0, 1] you put any 2 points a, b and that it is function  continuous everywhere. But for all t less 

than a it is 𝜔 (a), and for all t bigger than b, it is 𝜔 (b).  

If you take this definition, then restrictions etc have no problems. So, such things can be slightly 

modified. But whatever you do there will be some other problem--- this is what I want to tell you, 

okay? Therefore,  the definition with [0, 1] as domain is found the best among all other definitions.  
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So, how to deal with this when you cut?  Take a path. Now cut it into two parts. Then I would like 

to think of this as composition-- original path as a composition of these two paths, this is called 

subdivision. The subdivision should be allowed and it is easy to adopt it in our definition and we 

have a beautiful theorem there which will take care of all objections of this type.  
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So, let us come to that one. This result is precisely called  `invariance under subdivision’  up to 

homotopy of, what you call  the concatenation or the composition of paths. Namely, take any path 

𝛾 :[0, 1] →X . Now, you divide  the interval into n parts by choosing points  0 < t1< ᐧᐧᐧ < tn−1 < 1.  
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That is a  subdivision. Now, you restrict the original path  to subinterval, 0 to t1, t1 to t2, t2 to t3 and 

so on, call them  𝛾1, 𝛾2,  ׅׅׅ    ׅׅׅ    ׅׅׅ   , 𝛾n.  

Now if you take the composition  in our sense, you will not get the original path 𝛾, but what you 

will get is homotopic to, path homotopic to 𝛾. To prove this one you have to do it for only one 

single division namely 0, 1 put a t1 in between cut it down, re-parameterize as these two paths  on 

original  [0, 1],  both of them. Reparameterize and define the composition. What do you get is the 

original path up to homotopy, absolutely. Therefore you can safely say that --- you know all 

objections of this kind -- half the path  is a path fine. Only thing is you think of this as again taking 

place on the interval [0, 1], that is all.   
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So, here  I have proved it for n = 1 case, namely only t1 is taken.  Then by repetition, the general 

case will  follow. By induction, it will follow.  It is enough to prove this for n = 1. So, with t1,  I 

will call it as a, 0 < a < 1. Consider the following reparameterization of the unit interval from     

𝛼:[0, 1] → [0, 1] given by: 𝛼 (t) = 2ta, in  0 ≤ t ≤  ½;  =(2t − 1) + ( 2 − 2t) a, in  1/2 ≤ t ≤ 1. 

So, what I have done?  In the  first half of interval, look where t = ½   will go? It will go to a. When 

t is 0, it will go to 0. So, half has gone to a and 0 goes to 0, half goes to a and 1 goes to 1.  What 

do you get here? t = 1 this is 0, this is 2t −1 is 1, this is the  path.  

So, this is a reparameterization of suppose [0, 1] itself. You may think of this as identity path and 

I am cutting it instead of  at ½ , I am cutting it at a, these two are homotopic, path homotopic, this 

is what this 𝛼(t) says. Therefore, once you take this one, 𝛾 restricted to [0, a]. Reparameterize by 

this method that is the  hat. Then  is nothing but union of𝛾  with 𝛼. 

Therefore, it is homotopic to, path homotopic to 𝛾 itself. Because 𝛼 is a reparameterization.   
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So, this is the proof of this general  theorem-- invariance under subdivision. After this  you can do 

all the algebra of composition of these paths very smoothly. So, now, we shall  specialize to the 

case when the endpoints are the same--- that we will do the next module. Thank you. 
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