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We have started classification of covering projection; let us continue that work now. The first 

lemma we had last time we already stated it, let me recall it. There is an injective mapping  from 

the group of covering transformations of , i.e.,  Galois group of the covering transformation  

into  the set of right cosets of   in , where .  In particular, the 

cardinality of the group of covering transformation is less than or equal to the number of sheets of 

. Why this part follows?--- the latter part? Because we have already established a bijection from 

the set of right cosets of  with the fibre of  

The number of points in the fibre is the cardinality of the sheet; number equal to number of sheets. 

Since, there is an injection, so cardinality will be less than or equal to this number.  So, this part is 

OK,   once we define an injective map. The second part says that   is a normal subgroup, if and 

only if the map  which is only a  set-theoretic  function becomes  an isomorphism of groups. So, 

this is possible because, if   is normal, then the right cosets form a group, first of all. 

So, the map  is from one group into another group, and the claim is that it is actually an 

isomorphism. Not only it is injective, it will be an isomorphism automatically.  That means it is   
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onto also. So, several things you have to verify, so let us do them one by one; first, the definition 

of the map . 
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Given a covering transformation  of , look at the image of  under this covering transformation. 

Since, p of f is f which follows that; sorry ,  it follows that . That means  

 and  are in the same fibre of .  So,  I am going to take  = ,  is a path from  to 

.  When you take a path from  to  its image under  will be a loop in , because both  

and   are mapped onto the same point,  namely, here in this particular case,  onto   

Therefore  is a loop at .  

Take its class and take its right coset,  K of that; the right coset of K with that element, this is  the  

definition of .  Now, the only  ambiguity at all is in the choice of that the path joining   to 

Take another path, then what happens? Suppose  is another path. Then  is a loop at  and 

and hence  It follows that 

 Thus the coset class is independent of 

the  different  path that we are taking.  

 To show that  is injective, proof is similar now. Take another .  That is  is a covering 

transformation of  such that   Suppose, the path joining     to    is .  Then  it 

means that    But, then   This means that the loop 
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 lifts to loop at .  As seen before, this in turn implies 

.  Remember what are  and ? They are covering transformations. 

That means   which in turn means that they are lifts of  through   At one 

point they agree, then they must agree everywhere, by the unique lifting property. So, the first part 

(a) is complete, where definition and injectivity of   are established. As an immediate 

consequence, cardinality of  is less than the number of sheets. Now, let us come to (b):  is 

normal if and only if  is an isomorphism. I will just assume that this  is surjective; instead of 

isomorphism, let us just assume surjectivity and see what happens. Suppose  is surjective.  
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First of all, we have already another  bijection, which  I am going to use again; the  bijection 

between the right cosets of  and the fibre   From this, it follows that to each  

there exists a  such that   Because  where  is path from  to 

 and then this right coset is mapped to the end point of    Thus we have a bijection from  

onto .  

 Now, take any point any element  of  and  lift  at    to a path   Now for any 

point , how to get the lift of  Take the element  which corresponds to  viz., 

 It follows that  is  the answer.  (The lift of omega at z; z is also a point over x; I can 

lift it at any point in p inverse of x, it is a starting point. Look at g operating a point omega bar, g 

of omega bar; g is a transformation from x to x, X bar to x bar. You can compose omega bar with 

g; g omega bar operating a point 0 is g of x bar that z by definition. That means the starting point 

of g composite omega bar is nothing but z. But, g composite omega bar is p of that is nothing but 

the same omega bar; because p composite G is nothing but p itself.)  

Now  it is clear that  is a loop iff  is  a loop, because g is a homeomorphism. (You take a 

path omega lifted at x bar; it maybe a loop or it may not be a loop.  

If it is a loop, then g of that is a loop for all g; and that will give you for all elements, because of a 

surjectivity start with z. The loop the lifts of omega at all the points z in the fibre, they are all loops. 

Or, if it is one of them is not a loop, then none of them is a loop; so that if and only if omega bar 
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is a loop; this is a loop if and only if omega bar is a loop.) This  proves that the covering is normal; 

but then we have already established covering is normal iff  the  subgroup K is normal. So, 

surjectivity of  gives you normality of .      

So, in particular phi is an isomorphism; it is it is surjective also k must be normal. Now, we can 

do the converse. Suppose,  is normal; then I have to prove that  is surjective, and  is a 

homomorphism. While proving normality, I did not have to worry about  being  a homomorphism 

or not; just the bijection was enough, surjection was enough. Now, I have to do the other way 

round also; namely, once is normal the converse part. 
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Suppose  is normal subgroup of . Then I have to show that p is a homomorphism and it 

is surjective; injectivity we have already done. So, what is the meaning of  is normal? The right 

cosets of K form the  quotient group, which we denoted by .  Otherwise it is only a 

cosets space. Now, it is a group. Even an element in this group how do you represent? It is by a 

coset .  Lift this  to a path at ; look at its end-point .   i.e.,  look 

at the fundamental group  and take its image under   These things we have seen. It is 

equal to the conjugate to  by same element .  From   you comeback. By the normality a 

conjugate of  is equal to  

So, what you have is you have two copies of   but, the base point you have changed. 

One is  and another one is . We apply lifting criteria to the map  , through the 
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map . Since ,  the map can be lifted. So, applying 

the lifting criteria to one of the maps the map p itself; so both of them are p, but the base points 

are different. So, you can demand that   goes  to  and get a function  so that 

 This  is means that  it is a lift of p through p itself. So, p composite f is 

p and p of  bar is  Now, reverse the role,  lift the map  through   

What you get? 

You will get a  such that  and  But then,  

Also  g  By the uniqueness of the lifting, we get   

That means f and g are homeomorphisms, which  means that  is  covering transformation.  So, 

what I have done is I have done something more than this one. So here what I have? I have first 

shown that the normality implies that the  map  is surjective first; so, it is a 

bijection. 

So, how do you do that? By the lifting criterion get  such that   Since  is 

already known to a bijection,  this shows that  is onto. 

 Now, you have to show that this   is homomorphism, surjectivity is done; it is a homomorphism, 

so you have to show that. So, here is the workout. 

(Refer Slide Time: 19:30) 

 

728



Given  take paths   so that ,  and    Then, 

if you take , it is a path in  from  to , i.e., from  to   All 

these paths are inside  itself;  is a path from  to   because I am applying 

 to the path ;  initial point is  for  and end-point is . Therefore      of that will be initial 

point for    and the end-point will be   Therefore, if you take  , this is 

another path in   starts at  and  ends at ;   and this one starts at  and ends at 

 Therefore, this path is from  to ).   

Therefore, by  the definition of , we have  and 

  it will be the end-point of phi composite f will be the end-point  

But, what is p of this path? It is  because  By  the 

group law on the quotient group of right cosets, we get 

  (How to multiply right cosets? 

 ) 

 

 So, you see you had taken left cosets, then you will not get a group homomorphism; but you would 

have got an anti-group homomorphism. The way we write the composite of functions is the reason 

for that. So, here you get the correct law provided you take right cosets.   

 

So this completes the proof of the lemma. So, let us go ahead; this is only a beginning as it is,  as 

the name indicates. So, some immediate corollaries of it  are stunning; this is something which you 

can remember very easily. 
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So, what it says?  Start with connected normal covering blah blah blah; all those basic assumptions 

are there. We have to assume X is locally path connected, path connected beyond that. Take a 

point  in the covering space, such that it comes to  in the bottom.  Then we are in the exact 

sequence of groups and homomorphisms. What is it? The trivial group to  followed by  

  This part is exact just means that the kernel of  is equal to image 

of this, which is equal to  (1). That means  is an injective. This part we have already we have 

already established.  

Now, we have another group here; another group of homomorphisms  the 

group of covering transformation. And the last one is trivial means that  is a surjective 

homomorphism. In the middle we have  Kernel of  is precisely equal to   of this, which is the 

normal subgroup   So this follows easily by the first isomorphism theorem of group theory, so 

here it is. All  I have to know is that  this notation .  
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Then, look at q which is the quotient map, quotient homomorphism from  to the right 

cosets, this is a quotient map. Put   Since  surjective, it follows that  is surjective.  

Since  kernel of  is equal to , so is kernel of . 

 

(Ignore the rest of the explanation here: We have established that  is an isomorphism from what? 

From where to where? This lemma are where lemma what it is say? Phi is an isomorphism from; 

of course I should not expect you to tell this, so I am. So, what we have seen in this lemma I am 

just recalling; this group of covering transformation so to the right cosets. So, what you have is a 

first (try to) morphism this picture; given isomorphism this way is when isomorphic here map here 

is a right cosets. 

The right cosets to G p this is an isomorphism; but this map is this, this is a this is surjective 

mapping. The kernel of q is same thing as p check, by the very definition of right cosets and the 

quotient group. K is nothing but image of this and this is injective. So, by the image if you go go 

to the quotient map, this is an exact sequence. To change this one by this map and go here, and 

what is the definition of psi? You just try as, you just take this phi inverse, phi composite phi 

inverse. Go back here q composite phi inverse; so that is chi.  

So, it is actually first isomorphic then; if they are homeomorphism such that, right cosets have 

gone to the same point. That means this kernel of this one is K. Therefore, modulo K it is inside 
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the morphism, whichever way you like. So, I have fairly here write down, if you if you do not 

know the first isomorphism; then also this one will fall. All that you have to know is the quotient 

quotient map as kernel is precisely K; and that is all and quotient map it is surjective map.  

So, this quotient is get identified with G p. So, instead of writing this group here; I am writing G 

p now; which is more descriptive in terms of our covering transformation. You have fundamental 

group here, you have sub subgroup K and then you are going up here; and so fundamental group 

of this one is up stairs. The covering transformation of that is a quotient group, so this is the picture; 

so, this is now theorem which we keep referring to.) 
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Corollary. This is again an interesting corollary, namely, you start with a connected covering space 

etcetera. Suppose  the top space is simply connected, which means as in the earlier  lemma,   is 

trivial. Then, quotient is same thing as the fundamental group itself; Therefore   will be 

isomorphic to   itself. So, this  itself,  because now the  right cosets 

are nothing but elements of  Therefore, this   itself is an isomorphism oform the group 

of covering transformation to   The covering projection  has the following universal 

property; this is the extra thing that we have that we have to digest, which is not at all difficult. 

What it says, given any covering projection  from  to , there exists a map  such that 

 That is,   which is a  covering projection from a simply connected space  factors into f  

composite , where   is any given connected covering projection onto .  Thus  you  see that a 
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simply connected covering space  as a  big space which `sits’ over all coverings of X. Only thing 

we have to assume that  is connected.  That is why  is called as universal covering. We are 

going to say what is  universal property first; we are going to make a definition because of this 

property. So, here is what I have drawn a picture. 
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 is here,  is the covering projection; and this is connected and  simply connected,   is tirvial 

and so its image is also trival. By the lifting criterion,  says that this can be lifted. Once trivial 

group it is inside the image of q check; that was the lifting criterion, so it can be lifted up. In fact, 

there will be several lifts depending upon the first base point one, base point where you want to 

go. We have to fix the base point. Then it is unique. So, this  is factored into two maps. Here   is 

given; you have some  choice in  ,  but not  much.   

In fact, this  itself becomes a covering projection; right now we are not proving  that presently. 

So in conclusion, this we begin with a simply connected covering  of , then it will sit over 

every covering of   What we will prove that this  itself is a covering; so universal covering is a 

covering for everybody. So, that is why we are making a definition here, namely universal 

covering; so, let us look at with definition now.  
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Start with a covering projection  Let us assume that all spaces are  connected. Fix a 

base point   and a base point  above ;    We say  is  universal covering 

projection-- you can just say  `universal’, if for any given connected covering projection 

,  and an element , such that, , ( see,  and  are both sitting over ; that 

is  necessary, as soon as this much is  mentioned),  there is a unique map , such that 

 and   

Uniqueness follows by unique lifting property; existence follows by  lifting criteria, in the case  

is simply connected.  
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So, we have just made a  definition, we have just given the definition of universal covering. Let us 

now see one important  property of universal coverings. Given two universal coverings, 

 of the same space , you do not have much choice, namely there 

are homeomorphic to each other. Actually, the equivalence of  coverings  they are the same name; 

namely, there a homeomorphism  such that  Remember, such 

a thing is you have defined equivalence of covering projection. 

Therefore, a universal covering space if it exists is unique up to  the  equivalence.  There is only 

one equivalence class of universal covering space. Maybe there is none, we do not know that yet; 

It happens that universal covering space is may not exist.  
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So, how to show that this uniqueness? Very easy; you use the universal covering both ways. You 

will get maps from the other one way, other way and so on; just now I have shown that  is a 

homeomorphism and so on; just here same thing you have to do. Apply universal property of  p1

 to obtain the map   and the universal property  to obtain a map 

These maps  satisfy .    

Now, you look at  and  Therefore, by the uniqueness part, they must 

be a identity maps; which means one is the inverse of the other. So, this is why universal covering 

space if it exist, it is unique.  
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So, this is the remark. Connected universal covering space over , if it exists, is unique up to 

equivalence of covering projections. In particular,  previous corollary says that simply connected 

covering are universal coverings. Simply connected coverings are universal coverings; but we still 

do not know whether they exist.   We can now complete the answer from the question of existence 

of covering projection, corresponding to other subgroups, assuming that simply connected 

covering exist. So, that is the next project; we will stop here. 
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