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Hello, everybody. So, today's topic is solution of Lifting Problem. We have already solved this 

problem, in the simplest case namely for a loop, a loop based at a point  can be lifted through 

the covering projection if and only if the loop  represents an element of  should be in 

inside the  image of , where  is the covering projection, this is what we have seen. 

So, now we want to expand this result to arbitrary spaces. The point here is, the space cannot be 

completely arbitrary, we need to assume some kind of hypthesis to ensure that  enough paths must 

be there inside the space. So, we assume that it is locally path connected. And of course, after that 

we can assume that it is connected that is not a restriction, because we can always argue  component 

wise. 

So, let us assume that the space is locally path connected, take a map from this space to  the 

base space,  is the covering projection. So, then we ask the question whether this map 

can be lifted.  So, it will depend upon the character of this map f, so what is the condition? The 

condition turns out to be completely in terms of algebra, so this is the gist of the thing here.  
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So, this is the question, we have , where   is the covering.  Can you find    

a map  such that ?  So finding a map . So, what we want to assume is that  

is locally path connected and connected. So, because of our earlier criteria on loops, lifting of 

groups, this problem can also be converted into purely algebra. So, this is the theorem, the lifting 

criteria. 
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So, as usual  is a covering projection,  is locally path connected and connected space, 

 is a any continuous function, and we assume that  ,  such that  
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  If this is the case, there exists a map  as we want, namely, such 

that  and    if and only if  ,  under ,  goes inside  , i.e., 

. 

Notice that left hand side and right-hand side, both are subgroups of , because,  

 and   So, both of them,  and   are both homomorphisms into  

pi 1 of X x. So, these two subgroups should must have the property that this one is entirely 

contained inside the other.  If this happens, iff there is a  map  such that  and 

. 

So that is `if and only if’.  The `only f’ part is very easy, because  you understand? So, 

when you pass on to the fundamental group level,  namely, taking , you get 

. So that is very easy by functoriality property. 
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The induced map from the composite is the composite of the induce homomorphism, that is what 

we have to used.  I repeat that we have  because we have .   And hence 

. But    lands  inside . So, you have to 

follow it by . Recall that for ,  the notation is .    is the subgroup of  

and   this subgroup must be contained inside the subgroup  
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Conversely, suppose this is contained inside , Now we must construct .  So here is the 

procedure which resembles more or less the primitive mapping theorem in two variable calculus 

that you must have learnt, If you remember you can see the analogy.  Given any point  belonging 

to ,  first we choose an arbitrary path from  to  inside . This is possible because  is path 

connected, connected locally path connected means its path connected, this is what I meant by 

having enough paths. 

So, here all that I have used is the assumption that  path connected. We will use locally path 

connectedness also.  So, start with any fixed , then for any , join it to  by a path . Take a 

lift of this  path  which is inside  and is starting at . So, take a lift , of this one, this will 

be a path inside  starting at   Look at its endpoint, the endpoint, I am going to define as .  

So, this kind of thing we have done right in the beginning, while computing the fundamental group 

of the circle. So, here for arbitrary function we are defining  Now, you have to verify 

many things. First of all why  is well defined? Remember you have chosen some paths here,  to 

, there may be many paths, in fact, once  is path connected, there  will be many paths. If I change 

the path, the end point of the lift  may be different. So, I have to ensure that irrespective of what 

path you choose, the end point of the  lift is the same. 

So, this is the path independence absolutely. there is no homotopy or nothing. We started with   

path connected, and  locally path connected, we have joined the two points take the image of the 

path inside  and then lift it. And we want the endpoint to be independent of what path we take, 

only thing is, it will  be joining  to , that is all.  
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So, whatever we need, it turns out to be  just there. We have to first show that  is well defined. 

So let  be another such path in , another such path means what? -- joining  to . Let    be the 

lift of   at .  Then we have to show that  That is what we have to show.  

Look at the loop  ; that is a loop in  loop at  

Now, if you take  by hypothesis:  the whole of   is  inside ; so 

that is the hypothesis. Therefore, by our lemma for lifting the loop, this loop  lift to 

a loop  inside .  

But that would mean that the two paths , which are lifts of    respectively, these 

two should have the same end points. So, this is our lemma 7.2 which was purely geometric, that 

we have seen. So, we are using it again here. So, these two have same endpoint,  So, 

set theoretically, we have already formed a function  such that  and  

Now, we have to show that it is continuous. What is immediate is that  automatically. 

What is   Therefore   That is what we want. 

So, f bar followed by p is p composite f bar is f that is already there set theoretically. If   is 

continuous this will complete the task.  But we are given  is continuous,  is continuous, you have 

to show  is continuous. So, you have to work harder there. So, let us see how the continuity 

comes. 
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This is where we have use local path connectivity of . Take a point  belonging to  at which I 

want to show that  is continuous. So, take a neighbourhood  of   Then I must produce a 

neighbourhood of  which goes inside  under ; that is continuity. But inside inside every 

neighbourhood  of , I can choose a smaller one  which is mapped   homeomorphically onto an 

evenly covered neighbourhood of   of ; that means    is a disjoint 

union of open sets each of which  is mapped to  homeomorphically,  under . 

Now by continuity of  and the local path connectivity of , we use both of them,  we get a path 

connected open neighbourhood W of  in , so that  . First, by  continuity, you can 

choose such that , but then inside this  whatever you have chosen you can choose 

another one  such that this one is path connected neighbourhood of , because  is locally path 

connected. So, by renaming  as ,  you get a path connected neighbourhood  such that 

.   

So, this W contains the point , it is a neighbourhood of . Let  be the path from  to  chosen to 

define   Recall how you  defined . You have fixed some paths then take f of that and take 

the lift of that at  and take the endpoint of that lift.  So, look at this ; it is coming from  all the 

way to   which is  this , which is path connected. Therefore,  I can take a path completely lying 

inside  from  to any other point in . For each point , we can choose a path  completely 

lying  inside  and  joining  to .  Then use the path. 
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Now gamma followed by sorry,  is a path in  joining  to . So, I can  take f of that,  lift it, 

and take the endpoint. That will be the definition .  Remember in defining ,  we are free 

to choose any path from  to   So, we have chosen this path. Now if  denotes the lift  of  

at the point , then  is the lift of   at the point    Therefore .  

 Note that since   is inside ,  we have  is completely inside   So, where is  Where 

is this point is the question.  If  this point is inside our  then I am done, then I have shown that 

.  Now recall that I have chosen  so that .  I want to show that  
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On the other hand, since  is evenly covered (that is what we have to use now), and  maps    

homeomorphically onto  , it follows that the entire path , which is connected, is inside a single 

component of    It cannot be a portion is here and a portion there and and so on.  So look 

where the starting point  , which  is nothing but  So whatever component contains 

it that must contain the entire  and hence its end point   But  our choice is that this 

components is precisesly . is one of the components homeomorphically mapped onto . So, it 

must be inside this one. So, that completes the proof of that  continuous.   

Rest of them you already done. So, you see effortlessly, almost effortlessly, taking  small, small 

steps we have proved a big theorem now, namely, when  an arbitrary continuous map can be lifted. 
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From now onwards there will be several important results derived from this one, just like we 

derived several things by just looking at what happens to a lift of a  single path. 
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So, this is what I am telling you. Apart from application within covering space theory which we 

will study in the next section, this result has many applications elsewhere also. Here is just a 

sample. Classically in complex analysis, various statements there  go under the name Monodromy 

theorem, and that is the application I am going to give. So, the Monodromy theorem you may read 

may look like slightly  different but if you understand this one correctly, what I am going to say 

here,  all other versions the same in principle. There are different versions of this one that is what 

I wanted to tell you. I cannot cover all of them separately. 

(Refer Slide Time: 20:16) 
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So, I will state one thing which  immediately follows from what we have seen. Take  to be a 

locally path connected and simply connected space. (When you take open subsets, which are discs 

or some such things or simply connected domains in complex analysis, this condition will be 

automatically satisfied, because open subsets of  are  local path connected.) 

Take , a covering projection,  any cover projection. Then every map  has a 

lift . Why? Because  is simply connected, i.e., =(1),  f of that is trivial, and 

the trivial group is contained inside every subgroup, and hence it is contained .  

So, whatever criteria we need is trivially satisfied. Therefore, every map can be lifted to the 

covering. 

In particular look at a map from  to  It can be lifted through the  exponential function to . 

That is the meaning of this because  is simply connected. It can be lifted through the exponential 

function.  Now   is contractible. So, any map into   is what? Is null homotopic. Take a null 

homotopy, compose it with exponential function, you get a null homotopy of the map here. So, 

every map from simply connected space to  the circle is null homotopic.  Of course, I am assuming 

locally path connected and connected and so on. So, this is what it is.  
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The first part is obvious because by simply connectedness.   The trivial group is contained inside 

every subgroup, so criterion for lifting is satisfied. Second part, you lift it to through exponential 

function, and then use the fact that   is contractible. So that is null homotopic, push it down to  \

 by taking the exponential function.  

 

So, in the remaining time,  I will do a little bit of new constructions-- how to construct non-trivial 

coverings. 

If you take identity map, it is a covering, exponential map is a covering, but you might not have 

seen many examples of covering projections. I have given you only some group action and so on. 

There are other ways to construct a covering projection.  Start with a  space and constructing 

coverings of it-- not the other way round.  Our group actions and the quotients etc. Give covering 

projection in a different way.  
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Let us construct some non-trivial covering maps    To begin with note that  

is non-trivial covering means that every loop in   cannot be lifted. If every loop can be lifted,  

then it will not be a non-trivial covering.  You should not be able to lift at least some loop at some 

poitn or the other.  That means that you have to break certain loops in the space . So, that is now 

heuristic saying. Obviously you must look at loops  representing non-trivial elements the 

fundamental group of . 

For instance, let us do a very simple thing, namely,  take the space ,  the 2-sphere along with one 

of the diameters namely, let us take   And join them. So, that is 

the diameter. So, now your space  is 2-sphere and a diameter, in the centre you have a handle it 

is like that. If you throw away ,  which is a centre of this diameter, what do you get? 

You get   union two open arcs, half open arcs. Those arcs can be deformed back to . This just 

means that  deforms to  ;   is a strong deformation retract of   But 

we know that   is simply connected.  Therefore,  is also simply connected, because 

these two have same homotopy type.  If you remove one particular form , it becomes simply 

connected. 

Now, your theorem says that if you take the inclusion map think of this as =  . is 

locally path connected and simply connected. Therefore the inclusion map, you must be able to 

lift it up, you choose a point somewhere say above ,  there will be many points because it 
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is going to be a non trival covering projection,  at each point you will have a copy of  

sitting inside .   

So, this is the picture you have of  Then the missing points will be also there, a number of 

missing points will be there, if you fill them up you get the full picture of .  So how is this to be 

visualized? So, I will give you a simple example of this one, this much is the logic, now we will 

need some visualization. So, first take only two copies of   and then you fill up  

points  lying above  somehow and so that you a single connected space  and a covering 

projection . So, this is what you have to achieve. So, it is not very difficult, so, all this 

I have done. 
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So, while filling missing points you should  be careful also,  namely just filling points may not  be  

right. The neighbourhood of the point    in  is an open arc, that is also simply connected. 

So, all these  missing points above in  will have neighbourhoods equal to  an open arc. So, what 

do you have to do is: you have to take a number copies  of  and    equal number of 

copies of open intervals, then glue all them together, neatly. When you glue them together only 

the extra point in that neighbourhood must be at the centre point 0 of the arc. So that is what you 

have to do. So,  I have taken these arc to be copies of , which is an open subset the  

whole  and  is neighbourhood of  So, I will show you the picture here now.  
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This is the picture and this is the starting space ,  with a diameter. So here what I have done? 

I have taken several copies of this one, this is one copy, the inside portion I have drawn outside 

that is all. I will join it to next one, another one will be joined to next one, and so on.  So, this is 

an infinite cyclic covering, infinitely many copies just like in the case of infinite covering 

, exactly similar to that. 

Instead of these spheres here if you put a single point here--  say that  single point is an  integer 

and these are intervals of length 1, what you get is a copy of  here. So, I could have constructed 

this space as follows:  take the exponential function ,  replace each integer by a copy 

of  the 2-sphere and at the bottom what you have to do, take the circle ,  look at the point  

, replace it by a small 2-sphere. So that is the picture. So, that is a infinite covering 

projection. 

I can do just a double covering projection. Take two copies of , draw them as a 2-

sphere  with two whiskers here, two whiskers here, then join them together like this neatly. So, 

both these spheres  go to the same sphere below here by a homeomorphism, in that 

homeomorphism this path goes precisely to the central line here, the diameter. Similarly, this will 

be also going to central line. 

Now, this is three of them, this a triple covering. You can do a triple covering also, you can do a 

four-fold covering, you can do a n-fold covering. Do you know why this is so simple? The 
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fundamental group of this picture is nothing but infinite cycling, this covering space.  Pretend as 

if these are all coverings of . Only one of the point is replaced by a big 2-sphere there, that is the 

exactly what is happening. Let me do one more construction which I had promised last time,  did 

not have time to do. Let me do that one also now. 
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Yeah this is the one. Obtaining a covering which is not a regular covering, that will show that the 

fundamental group is not abelian. So, this was the topic last-last time, so I start with . 

This can be taken as the figure 8. There is  one common point for both circles, labeled .  I orient 

this one and label it  ,  orient the other circle, labelled it y. So, how is the covering got? This point 

 is copies three times here and labeled   This  one circle is copied here and leabled  

itself. Another one  copied here and labeled .  But I have taken two arcs each  labeled them as 

 respectively,  So, each of these open arcs is mapped to  single circle here. Note that   the points  

 are all mapped to the same point . So, this arc goes to the circle  and the bottom arc 

here also goes to , but these two arcs go to , there are three arcs and sorry two arcs and a circle 

mapping onto this circle. Similarly, two arcs and a circle mapping onto this circle, that is a covering 

projection. 

Now, by the very nature,  this  loop at   denoted by ,   has a lift as a loop at  but at  it 

lifts to a open arc. This is not a loop. There is another loop here at  it goes back to  that is also 

an open arc. At  if you lift it, it comes to  and  at , it comes back to . but at  it  comes 
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back to  itself.  So, this is a loop, whereas these two are not loops, that means that this element 

is not in the normal subgroup of the image, the image is not a normal subgroup actually. 

So, it happens that the the image  of the fundamental group of   is actually a subgroup of order 

3.  I could not have constructed such a covering of order two, because  index two subgroups are 

normal automatically. So, I need at least three points in the covering projection, three sheeted 

covering to get a non normal covring.  Is that clear? That this is a covering projection which is not 

a normal covering. Why? Because a particular loop lifts to a loop as well as two open arcs here. 

Thanks, we will continue this kind of discussion next time. 
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