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So, today we continue the investigation of the relation with the fundamental group and we will 

come to what are called regular coverings.  Before that, we have to consolidate the results that we 

have proved last time and improve upon them a little bit. Let us go back a little bit here. So, this 

theorem, it says that induced homomorphism  is injective, the second part says that there is a 

surjection   from   onto the fibre  ,  which is a constant on each right coset of 

the  sub group , and hence, defines a bijection of the right cosets of  with the 

set . So, this is purely algebra now, the only topology is the hypthesis that   is a 

covering projection of path connected spaces.  I have chosen  base points,    on top of .  Once 

you fix these notation, there is a homomorphism   from the fundamental group of the top space 

to the fundamental group of the bottom space, and that homomorphism is injective it is a 

monomorphism. 

So, the subgroup  can be identified,  under ,   with the group  Of course, identification 

has to take place under .  This homomorphism is important. Moreover, if you take the right 

cosets of the subgroup, they correspond,  in a nice fashion to the points of the fibre. So, this is a 
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statement, proof is not very difficult, once you have done lemma 1, most important lemma 2 is 

purely geometry, everything follows very easily. So let us look at this one. 
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Let  be a loop at  I am proving the injectivity. Let  be a homotopy of , when you go 

down, to a constant loop.  This  just means that  I want to show that   

That means, I have to show that that  is path- homotopic to the constant  loop at  in   

When you go down to  ,  it is homotopic to  a constant loop relative to endpoints. So, start with 

a homotopy,  such that  the starting point is ,  end is a constant path. The homotopy is, 

remember, relative to the endpoints; i.e.,   two endpoints 0 and 1 are kept  constant all the time. 

Now, let  be the lift of  such that the starting path is .  I do not say anything about the other 

end. This is just by the homotopy lifting property of  that  I have used, that is all.  Then  you look 

at . As we have seen before, it is inside . That is because   

So, this is inside the fibre. 

Therefore, as seen above, by the discreteness of the fibre and connectivity of the interval and henc 

that of , it follows that this entire thing is one single point , because that is where you 

have lifted this whole thing. For the same reason,   (  is a loop  

And ) So, all of them are at this point, the H bar of t 1, for every t and s belong to 

s. 
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Therefore,   itself is a homotopy of  ,  relative to 0 and 1 to a constant loop. Bottom is a constant 

loop; the top will be inside a fibre. But the fibre is what, discrete all the time I am using same thing. 

Therefore, it is a constant. So, that proves  is injective. 
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Now the next thing.  I have defined a set theoretic function from the right cosets of 

  to the fibre . This is done by first defining a function 

on the group itself. And then, restricted to cosets, observe that it is a constant. So, it gives you, 

after all, a function on the set right cosets.  The set of right cosets is a quotient set of of the group, 

by the  subgroup. So, this is what I am going to do. 

Take a loop  which represent an element here. (After all, elements of  the fundamental group has 

to be represented by loops.) Lift this  to a path  at ,  (this  is fixed, for the entire   investigation). 

And let the function  be defined by  Recall that  depends only on the class 

,  whatever loop I take in this class, it depends only on the class. Therefore,  is well 

defined. By the first lemma that we proved, theta is well defined, well defined means what? If I 

change omega to omega prime here, omega prime 1 will be also equal to 1. 

Now, take any ,  inside this fibre. Since   is path connected,  we can join this one to   Say, 

 is a path from  to   Then see that    is a loop at  .  All these things,  we have seen already 

I am just repeating it. Now what is   How is it got?  
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You have to lift it; you have to lift it at x bar and look at the end point. But then point is that we 

started like that, there is only one lift remember and it is already a path there and you have taken 

the image of that path, there it will be a given path. So, it is tau itself and endpoint of tau is z. 

Therefore,   

 So, this shows that this  is surjective. Now, I have to show that this  takes same value on the 

right cosets of . Now, I would prove it such that all steps are reversible,   `if and only if’ 

statements,  so that automatically it will porve that   defines  an  injective mapping on the set of 

right cosets.  And surjectivity we have already proved. So, the proof starts with     iff 

. What are  omega and lambda? They represent elements of , some loops at 

.   are the lifts of omega and lambda at .   The  end point are the same because  that is the 

definition of   

So, next one :  iff  lifts to a loop at .  So this also we have  seen before. It  is 

lemma 2 actually.  

Next:  lifts to a loop at   iff   What is this K? 

Remember .  So, this also we have seen.  

Finally:  iff  . This is an easy statement about subgroups.  So, this is a 

group theory.  

So, this completes the proof .  Whatever happens to the geometry of the loops and lifts and so on 

is converted into an algebraic condition.  
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So, we shall now investigate the effect of changing the base point in .  Of course, without 

changing the base point in . That means that you look at the  fibre  over , and change the base 

point there, what happens? That is what we are interested in now. And once again we assume  is 

path connected; that is important. The isomorphism class of  is not changed by chaing base 

points, if  is path connected.  This is what  we have seen long back. 

But the isomorphism class does not change does not mean that  is the same. So, can you also 

say that the  subgroup   does not change? That is not clear.  In fact, that is  supposed to be not 

true also. And this is where whatever we did in the previous theorem comes into picture again. So 

that the answer is already there.  
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So, the regular coverings is the title of this topic. For various points  (which   may be 

finite or maybe infinite you do not know, p inverse of x0 is a discrete set, this much we know), 

look at , they are all subgroups that is what we have proved, subgroups of   

The claim is that all these subgroups are conjugate to each other. The best relation that you can  

have : they are conjugate to each other. 

Once again, the previous theorem  contains a  proof of this. Let us go through that one little bit. 

Take a path  in  joining .  Its image under  will be a loop at  in  So, take 

 This defines an isomorphism    This omega is a 

loop, omega is a path from this one, but when you go down it is a loop. So, this will be a conjugate 

of alpha, sorry this is this is, this I am taking directly I have not applied p here. So, I am in X bar 

itself I am working. 

So,  start with alpha, a loop at  First,   is a path from  to . Then trace  which is a loop 

at   then go back via   to  So, this will become a loop at  So, this defines an isomorphism 

pi 1 of X bar to on to pi 1, this we have seen already. 

So, this is the isomorphism between any two fundamental groups at any two different points of a 

path connected space. This will depend upon the call   of course, if I choose another path this 

may be different ismorphism.  Observe that when you take , that is a loop. So, let 

 tau equal to p composite omega in pi 1 of x. Now  
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 That proves 

 

When you p of this, p of this one becomes tau inverse p omega p alpha something some element 

into this tau. 

So, tau inverse tau, now tau is a loop, so its class is an element of pi 1 of X. So, when you come 

down this arbitrary isomorphism through path is becomes a conjugation, when you pass onto the 

base space the above isomorphism becomes the conjugation by an element of inverse here. Tau 

inverse alpha tau, is that, is that clear? I mean is there any doubt in this one. 
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So, pi 1 of X bar x1 bar p check of this is some K1, p check of this is some K2, take a loop here 

that will look like p of some alpha, where alpha is a loop here, look at this this map it will give 

you a map, this will give you an isomorphism of this one, which another elements of pi 1 of X bar 

x. But p check of that will be K2, so but this will give tau K1 tau inverse K1 tau 2 is equal to K2, 

when you come down. So, let us say the conjugation is tau inverse. 

So, various groups K1 K2 etcetera all of them their images of p check when you take the different 

points inside p inverse of X, there are all conjugate. So,  this theorem automatically leads us to 

study of normal subgroups, because for a normal subgroup all the conjugates are the same, the 

conjugating element may be any element from the group, that is by definition. So, this leads to the 

notion of normal subgroup here. So, let us make a definition.  
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A covering projection is called a normal covering if the subgroup  is 

nroma.  Obviously, this word `normal’ is borrowed  from group theory.  I am not sure whether, 

whether group theory has borrowed it from the covering space theories or the other way round, 

because group theory was developed by Galois much later then Poincare, Poincare already studied 

this thing, so one is not sure whether it is normal covering was borrowed from group theory to 

here or the other way around. 

It is also called Galois covering. That name is  definitely after Galois. And there is other name  

regular covering also. Though all three different wordings are used by different authors. What is 

it? If the subgroup   is normal   (Here   is some point in 

. ) If it is normal for one point,  for all other points in  also,  it will be normal.  
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That is  immediate from definition. Also,  if the group   itself is abelian, then conjugation 

is identity no matter which element you conjugate. Therefore, every covering projection is normal, 

or you can call it Galois or you can call it regular covering. However, we shall soon see that there 

are many interesting spaces with  not abelian. If all   were abelian this would 

have been useless definition because everything is normal after all. 

So, having some topological criteria for a normal covering is quite desirable, this is the definition 

of normal covering in terms of algebra. So, purely in terms of topology what does it mean? In 

terms of geometry, what does it mean? That is what we want to investigate, but this is  more or 

less already answered. We have done the basic thing. All that I have do is combine proposition 7.1 

and 7.5 immediately. So, this 7.1  says this one conjugation and the other one is already there for 

us. This theorem, so we will just put them together, regular covering.  
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So, this is the theorem. The covering projection  is normal if and only if given any loop in , all 

of its lifts are loops or none is.  All lifts, means what? You have to only change the starting point 

of he lift, that is all, we have no other freedom. If you specify the starting point the lift is well 

defined. So, starting point you can take, any point of the fibre. Either all the lifts will be  loops or  

none of them is a loop. 

So, this is purely in terms of topology. If this geometric condtition is satisfied by   then  will be 

a normal covering, why? Can you see why this is true?  What does it mean to say that  is noraml? 

 is a normal subgroup-- that is the definition. So, what is the meaning of normal subgroup? 

Conjugating by any element maps  into .  Take a loop omega in X, if  some conjugate of  is 

inside  then only,  it has a loop as a lift. Yes, or no? 

Student: Yes sir. 

Professor: `If and only if’ that is what we have seen.  If  no conjugate belongs to , then none of 

the lifts of  will be a loop. So as soon as a loop you can conjugate by that element you will get 

into inside K, that is what you have to see. So, because of that theorem this is the precisely the 

meaning of this one. 

Some element some conjugate belongs to K as soon as that happens, all conjugates will be also 

inside the K, that is a group theory. If no, if even a one conjugate does not belong then no conjugate 

will belong, that belonging is converted into lifting into a loop or lifting not into not a loop, which 
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is does not belong. So, group theory part is converted into this one, but this is purely in terms of 

topology now. 

So,  I will stop here. Next time, we shall use this one to to illustrate, not to develop any theory, but 

to illustrate that the fundamental group of wedge of two circles this is a figure 8, fundamental 

group is non-abelian. We will use that non-abelianness, to conclude that there must be some 

subgroup which is not normal, everything will be normal if it is abelian. 

So, we will try to get that space and then use a covering and then show that some loops will lift to 

a loop, some other loops the same thing some other lift will not be a loop, same one single loop 

below in the covering at different points you lift them at one place it will be loop, another place 

will not be a loop. That will show that the covering is not normal, that means the fundamental 

group, the image of pi 1 of the above space inside the pi 1 of X is not normal, if you are in subgroup 

which is not normal the group cannot be abelian. So that is the way we have to do, but we will do 

it next time. Thank you. 
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