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Today's topic is Lifting properties of covering projections. Last time we introduced the concept of 

covering projection, checked some basic properties such as: a covering projection is  a local 

homeomorphism, and hence, its fibers are all discrete and it shares all the local properties of the 

base space and top space are the same. That is what we have seen. Before proceeding with lifting 

properties let me take up a few more properties  bits  of examples and so on. Then come back to 

and go ahead with lifting properties.   
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So, so we are about to establish that local connectivity, local path connectivity place a very 

important role in the study of covering spaces. So, often all authors blatantly assume that the base 

space is locally path connected before  doing anything. But, just to keep the theory a little more 

general, we do not have to assume that. So, if you want to do some serious thing you may have to 

assume that.  
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So, the key was this theorem namely when you have locally path connectedness then you can 

restrict the covering space to each path component of the top space. And there it will be a covering 

projection. So, you can study each of them separately and then put them put whatever observations 

you have made together. So, this is why this theorem is very important. So, this is what we proved 

last time.  
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Now, this is what I tell you: we shall assume that both base and total space are the covering 

projection are path connected and connected unless specified otherwise or it is clear from the 

context. When you are discussing in some example earlier another example itself is not locally 

path connected then it is clear that it is not locally path connected that is all. If we left something 

then we are assuming this thing this  you have to make it out form the context.  this what I mean.   
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Now, for example this covering projection word is used by different people in slightly different 

ways,  so  one has to be careful. Especially in algebraic geometry, a covering projection  need not 

be the covering projection the way we understand it.  

But it is not too far. So, I will give you an example. Look at the map  given by  . 

We have seen that  is a difficulty point. If you throw away that point then this map   

is a covering projection.  z is only point of trouble. On every other point, there are finitely many 

points in the inverse image.  So, this kind of situation is acceptable in algebraic geometry. So, they 

allow a number of points,  some subsets, some curves, some variety on which the given map may 

not be a covering projection. If we throw away that then on the rest of the  space  the function will 

a covering projection. Usually,  on a `large’ open set. Such things are called ramified coverings 

actually. In the above example the point   is a ramified point  or a ramification point. So, they 

talk about ramification points and so on. But their covering itself may have ramification. So, they 

call it  a covering projection. When they want to talk about the covering projection in our sense 

then they say unramified covering, i.e., there  is no ramification. So, the more expressive thing 

unramified covering is used for a covering projection because covering projection for them belongs 

to a larger class of functions, frequented and used in algebraic geometry.  
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So, this unramified covering projection is the word they use for the actual covering projection that 

we use.  
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So, here are few exercises which are straight forward. You can try them but I will not use them till 

you have you have mastered them. So, take a covering projection . If  is Hausdorff 

then  will be Hausdorff.  It is the other way round here. You know that if   is a 

covering projection then it is a quotient map.  
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So, under quotient map we know that if the top space  is Hausdorff it does not implies that  is 

Hausdorff. That is the case here also. But suppose you have a finite-to-one covering projection 

then  Hausdorff implies  is a Hausdorff. If it is a infinite covering then this is not quite true. 

So, we will have an example for this one but if it is a finite covering  then you should show that  

is Hausdorff implies  is Hausdorff. This is straight forward point set topological conclusion.  
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So,  we have seen this example before. The top space is  and there is an action of the infinite 

cyclic group on it.  The generator  takes  to . So, more generally the power of 

the generator will take  to .  These are all equivalence classes now.  

The quotient map is actually a covering projection. So, this happens because we have already 

introduced the terminology `even action’ and this action  happens to one such.  So, the quotient 

map   is a covering projection. Only thing is just like in the case of ,  we throw 

away the point    

The origin  is a single class so that creates a problem. However, after we throw that , it is a 

covering projection, Being a subspace of , the top space is Hausdorff.  But the quotient space 

is not. Look at the classes   These  two points cannot be separated by disjoint open 
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subsets of . I think we have seen this one before. If we have not seen yet you should check on 

this again. That shows   is not Hausdorff.  
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However,  in this previous the  space  is  T1 space. Therefore, if it is regular then it will be   

Hausdorff also. So, it is not regular. Similarly,  normal plus T1 will be implies T2. So,  is neither 

regular nor normal. However, for the top space, all these things are true ,  being a metrix 

space. But the quotient space,  the bottom space fails to be satisfy all these the separation 

properties.   
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And here is another example( exercise) which you can do yourself. But when I want to use,  I will 

prove this one. So,  take any continuous function . If we have a continuous function 

  which is a right inverse to , i.e.,  , then you say  is  a section of . 

(Sometimes people may not put the condition of continuity on .) But, I want continuity because I 

am doing topology that is all. So, a section is a continuous right inverse it may not be left inverse.  

(If it is a left inverse also,   would be a homeomorphism.) Here it just implies  is a surjective 

map this is a left inverse. Also,  there may be many sections of .   

In general, continuous right inverses are difficult to come by.  Now suppose, you have a continuous 

right inverse that is called a section. Let now   be connected,  be locally connected or locally 

path connected. So, I am specifically saying these things here because this for this exercise,  and  

is important that is all.  

Now, in part (a)  suppose that  is a local homeomorphism and  is Hausdorff. So, I am not 

assuming that  is a  covering projection. The second part (b), I am assuming  is a covering 

projection but  no Hausdorffness. Either local homeomorphism plus  Hausdorffness of  or just  

is a covering projection.  

Then the conclusion is: any section  of  is automatically a homeomorphism onto . This just 

means that   is now a  left inverse also, it is a two-sided inverse. So,  becomes a homeomorphism, 
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s is its inverse.  The hint is to show that  is both open and closed  in . Because,  is connected 

it must be the whole of .   
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Now, let us carry on with lifting properties. Homotopy lifting property if you recall asserts that 

certain maps exists. What are they? What are they? Namely, if one map can be lifted out of a 

homotopy then the whole homotopy can be lifted.   

Lift means p composite whatever new map you get is the old map. So, that is what we have we 

have seen that homotopy lifting property I am just recalling this. In mathematics there is in a 

uniqueness whenever you have uniqueness result which goes hand in hand with unique existence 

result. Quite often. Like first order differential equations solutions.  

In a small neighborhood there exist and in a smaller neighborhood it is unique. Such things are 

always nicer and more much more applicable then just existence theorem. Indeed, the uniqueness 

part actually solves actually helps to solve the existence part. Truly the existence part.  

So, this is the case here also. So, we shall first have this uniqueness result then we will use this 

uniqueness result to prove the existence of this lifts homotopy lifting. So, recall that if  

and  are maps,   is a lift of   through   means what?   That is the meaning 

of lifts. Now, we are always concentrating  upon the map , talking lifts through . 
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So, here is a neat theorem. Take  to be a covering projection now,  a connected space  and a  

map .   Suppose by chance we have two  lifts  of , viz., . Suppose 

further that  they agree at one point  i.e.,   At one point they coincide. Then 

the conclusion is  on the whole of .   

So, this is  similar to the uniqueness of the solution  first order differential equation. If you specify 

the initial condition than it is unique. This is like a initial condition at one point they agree. Then 

the whole thing get easy just like integration theory. Integrals are  defined up to a constant additive 

constant. There is no addition, multiplication here. At one point they agree continuity is there that 

is all. They already agree. So, the key is that  is connected. That is all.   is connected and  of 

course  has to be a covering projection. Otherwise, for arbitrary maps and spaces,  this will not 

be true.   
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So, let us go through the proof which is very straight forward. Look at the set  of  all points in  

at which  and  coincide. That is a subset of . It is given that this subset is non empty there is 

at least one point. So, if we show that  is open and closed in  then because of the connectivity 

of Y it follows that   is the entire Y.  

 is equal to  means  will be equal to   at all the points of . Therefore, what we want to 

prove now is that  is both open and closed. Take a point y in  and  let  be an evenly covered 

open neighborhood of ,    And  is covered by evenly covered open 

sets, because   is a covering projection.  

So, take a neighborhood  of , which is evenly covered. And this neighborhood is 

neighborhood of fy.  each  is an open subset of  and is  mapped 

homeomorphically onto  by .  So, you choose one of them, say,   be an open subset of  

 mapped homeomorphically onto  by p. Look at the point . It must be in one of 

the ’s and choose   that one.    

Now, choose an open subset , such that both  and  map   inside .  Since  g 

,  by continuity of  first you get two open neighbourhoods  such that 

 Now you take  That will give you  as required.   
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Then look at this: , for every . But   restricted  is an injective 

mapping. It is a homeomorphism.  We  have   and   

Therefore    

By definition this  is contained inside . By choice W is an open subset around singleton point 

whatever point you have taken in  . So, what we have proved is  is open.  

Now, if  were Hausdorff, then set of points were in the two   continuous functions agree will be 

always closed.  But we do not want to do that, we can do without the assumption that  is 

Hausdorff. We are going prove that the set  is closed, by showing that its complement in  is 

open.    

660



(Refer Slide Time: 20:10) 

 

Take the set of all points   in   such that  We have to show that this is also open. 

See this is compliment of capital . So, I want to show that compliment is also open now. So, to 

show that what do I do? As before let   be an evenly covered open neighborhood of 

  Of course, , but . Therefore, these two 

points  are in the same fibre of .  So, we can find open neighborhood  around these 

points  respectively, and we know  .  Of course both  but since 

 is injective,  these tow different points cannot be in the same   And  are mutually 

disjoint. By continuity,  and  are continuous function you will find  a neighborhood  of  

such that   Same thing again, you  first  get different    and then take the  

intersection.  It follows that  is an open neighborhood of  not intersecting Z at all.  Because 

   of any point  in  will not be equal  of that same point. Because they will be 

going to two disjoint open sets here. So, the entire  is in the compliment of . That whole 

compliment of  is open hence  is closed.  This proves the theorem.  

So, covering projection is the only thing which is used critically here.  
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The next step is to prove homotopy lifting property of covering projections for singleton spaces. 

For a singleton space what is a meaning of a homotopy?  We have seen that it is a path so this is 

called path lifting property. Path lifting property for our covering projections. First, we will prove 

that one. First point wise we will prove the pointwise version  before taking up general 

version.   

Take a covering projection . Given a path   and a point  such that 

. This is the starting point it is that initial value condition. Take a point above. Always 

points can be lifted because  is a surjective mapping. So, starting point you lift it up in .  Then 

there exists a path  such that   p composite of omega bar is equal to omega.  

So, omega is  lifted.  

The starting point of this omega bar is a point which I have chosen as x bar. We have already 

proved that such a thing will be unique if there is another path omega 1 with the same properties 

then agreeing at one point then omega 1 will equal to omega at all points. But we do not know 

whether this exists. But the uniqueness of this will help to prove the existence now. And it is not 

difficult. Let us go through this one.  
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Similar to the proof of uniqueness, like this one we used several times, we define  to be the set 

of all points inside  such that  is defined up to t, on  the closed interval.  the point 

that we have chosen.  Then it is defined up to t means what?  That it is a map  such 

that  Observe that   happens to be sub-interval containing 0 and 

contained in .  So, interval and contains 0, 0 is already there because x bar is there. 0 to 0 is just 

closed interval it is a omega is defined already.  

Now, let  be  the least upper bound of . It exists because after all this  is a subset of the closed 

interval  and so it is a bounded above. So,  take  as the  least upper bound or what is called as 

supremum. I want to show that  , first thing.  

Second thing is to show that    Essentially, this is equivalent  to showing that  the 

whole interval by showing that  is both and and closed and using that  is connected. But we will 

aviod  that  and make it easier here, just use the existence of supremum and then that supremum 

has to be inside  which implies that .  
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Start with an evenly covered neighborhood  of   Up to , the map is defined.   is the 

supremum means that  ff you take any point  ,  is defined on  Now, I want to se what 

is happening at  So, take an evenly covered neighborhood of   

For each , you put this notation namely,    (I am only interested  

actually in an open interval around   but I do not know, one part may be closed etc.  is equal to 

and so on. So, I will take a close interval or a half closed interval, no problem. Epsilon is positive 

that is good enough for us.  I epsilon is t naught minus epsilon comma t naught plus epsilon this 

interval may go out of I. It may get out of [0,1]  at some part so I do not want that. So, intersect it 

with [0,1].  

Now, by continuity of , choose epsilon positive  so that omega this is notation now choose epsilon 

so that this omega of this is I epsilon which is a neighborhood of t naught that is contained inside 

V. .   is an open subset containing  omega t naught, so by continuity of omega some 

neighborhood will be contained inside V that is all. This is this just from the fact that omega is 

continuous.  

Now, let   be the open set in  containing  for some  Take s,  just  to the left 

of  then  is already defined because  is the supremum. so omega bar makes sense there. So, 

take this   open neighborhood  of this such that  is mapped homeomorphically onto  by .  
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Because,  is evenly covered and , such a choice of  is possible.  Put 

 Then  becomes a lift of  on  . See this is a homeomorphism 

,  p restricted to  from  to  is a homeomorphism. So, I can take the  inverse of 

that. p inverse is taken on this subset. Then composite with omega. If you take p of this it will be 

omega therefore this is a lift of omega inside the whole of I epsilon. Because this whole of I epsilon 

contained inside V.   So, composing with   makes sense. 

 Now, look at     Up to s there we have already  path .  Therefore, by 

the uniqueness   for all   This omega bar is already defined.  

 I have got two lifts,  they agree at one point s, so, in this whole interval  which is   a connected 

subset, by the uniqueness theorem  they should agree on the whole of .  Therefore, omega 

bar can be extended on the union   Therefore .  In particular   belongs 

to .  But    is the supremum of  So  does not contain any number bigger than   .  Therefore, 

it follows that   This completes the proof of the existence of lifts of paths.  

 So, let us stop here and the full lifting property will be done next time. Thank you.  
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