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We start a new chapter, the new topic: Covering Spaces and Fundamental Groups. Of course, 

fundamental group we seen before. Now we want to study fundamental group in  relation with 

covering spaces. On the other hand, covering spaces is one of the oldest or the simplest or the very 

beginning concepts in algebraic topology. It is a link between point set topology and algebraic 

topology. It has lot of point set topologies which slowly passes on to give you the algebraic 

topology result as we have already seen in the calculation of the fundamental group of .  

What we have used is the exponential map and that is a prototype, a beautiful example of a covering 

space. Covering space here is closely related to another concept, namely, this is the classical 

approach what they used to call `discontinuous groups’. So, the discontinuous group action  you 

know we will be also studied here  to some extent. Why only to some extent? Each subject here is 

very vast, and  applied in almost all branches of mathematics.  
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Classically again, these concepts occurred in the reverse order. Namely, the discontinuous groups 

were the ones  which we have studied. The notion of covering spaces etc., came much later. So, 

like you know one can  cite examples of Gauss’s work,  and then theory of elliptic functions by 

Abel and Weierstrass's and so on. 

During the time of Riemann, the notion of covering spaces started taking place. In fact, you may 

say Riemann is the one who introduced even the manifolds. And then this concept of covering 

space also in his Riemann surfaces of some algebraic functions and so on. The fundamental group 

appeared much later in Poincare's work. 

So, one can give big credit to Poincare to put various things together and invent  some other way 

of looking at it at all. Nowadays, these three notions have taken deep root among all branches of 

mathematics. They have been found useful and, in any case, make a very very enjoyable, delightful 

study of mathematics.  
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So, covering spaces. So, let us begin with the simple definition and then consequences of this 

definition and so on. Later we will give some examples also. So, that is what we will do for today. 
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So, start with a continuous function from one space to another space which is also surjective. So, 

the first space I am denoting by .  (The bar has nothing to do with closer and so on. This is just 
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a  notation.) And  is space while  is another space, p is a map from  to .  This is the standard 

notation for a covering projection. 

Take a surjective function.  We say a subset  of  (usually this  is called the bottom space, and 

 is called the total space by the way. I will introduce those terminology also.) So, in the bottom 

space you take a subset  an open subset this will be  called evenly covered by ,  if      

( this word  `cover’ is not the usual cover, everything is very strange wordings here,)     inverse of 

V you have to come to   here,  is the disjoint union of open subset of . So, let us write 

p inverse of V as disjoint union,  , indexed by some set. Now, you can restrict  to 

each of the  and come back to V, because this whole thing is inside  inverse of . So, so when 

you apply  to any of ,  you comeback to . This map restriction map , this must be 

a homeomorphism, for every i. In other words, each  is a homeomorphic copy of this  and all 

 are  disjoint from each other. Union   of all of them will be the full inverse image of . 

(Refer Slide Time: 06:44) 

 

So, if this happens,  is called evenly covered by p. And look at the cardinality of this indexing 

set, that will be called number of sheets of  Each  is called as sheet. Sheet means what? It is 

just a copy of ,  copy in the sense it is homeomorphic. If  can be covered by open subsets each 

of which is evenly covered by , then we call   a covering projection. 
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Now, this covering is precisely that what I mean see this word covering here, this is that the union 

of all such  is equal to . So, this is just usual covering of a space by open subsets. These open 

subsets each of them should be evenly covered by . So, that means that inverse image of each of 

this set  under  is the disjoint union like this. This condition should be satisfied. So, if you vary 

V with this condition satisfying for all the V's and if you get the whole of  , then this  will be 

recalled a covering projection. 
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Strictly speaking each time, we mention the word covering projection or a covering space, we 

should not only mention the two spaces  and , but also the covering projection. It is like similar 

to a quotient space. When you say quotient space you have to specifically tell what is that quotient 

map from  . So, it is like that;   should be mentioned. 

So, strictly speaking it should be denoted by .  The triple is a covering. It is a covering 

projection. But that is too much to write here. Like even we do not write  for a topological 

space, the  topology is not usually mentions,  let  be a topological space,  we say. Similarly, we 

have to do with this shortening terminology. That is all. 

However, often this will be clear from the context which function we are taking and so on. So, for 

simplicity of language, we merely say  is a covering space of . We also say that,  is the  total 
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space and  is the base space. This I have already told you. Whenever you are covering a 

projection  it comes with a total space and a base space. 
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Every covering projection turns out to be a local homeomorphism. Recall what is the local 

homeomorphism  For every x in the domain namely, , you must have an open 

neighborhood  of  such that  restricted to  is a homeomorphism onto , which is an open 

subset of . If this is happens for every   then you call  is a local homeomorphism. And 

that is precisely happening here in the case of  

If  is covered by open set like this inverse image will be covered by open set like this. And these 

are disjoint union of  so x will be inside one of them and from  is a  homeomorphism. 

And to begin with these   are open in . Therefore, every covering projection is a local 

homeomorphism. This property, local homeomorphism, has a tremendous influence. Whatever 

local property of X is there, it will be there on  also. 

For example, if  is locally path connected, then  will be locally path connected and conversely. 

If this is locally compact then  will be locally compact and conversely. If this is,  say what is 

that, first countable then this will be also first countable and conversely and so on. More than that 

there are structure types; this is a smooth manifold then this will be a smooth manifold and 

conversely. Such, things are also true. 
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So, you take properties such as local compactness, locally connectedness, locally path 

connectedness, T1 ness, locally contractible, locally Euclidean(that is manifold etc.,) each of them 

holds for  if and only if it holds for .  So however, you have to be very careful in extending 

this kind of list. I said T1, that is fine. But  the next one  T2?  it is not true. So, this will actually 

tell you that T2 ness is not a local property; its local-global. It is about two points, whereas T1 ness 

is about one single point, at each point something happens. 

Like Hausdorfness, the next  regularity, normality etc., none of these is a local property.  If    has 

it,    may not have it;  has it,   may not have it. Either way it may or may not, we do not 

know, we cannot say. So, there are exercise about that one. 
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Every local homeomorphism is automatically an open mapping. Is that clear? Because take an 

open set for each point we have neighborhoods whose image is open. So, this open set is union of 

such open sets, so image will be union of those open sets. Therefore, image of every open set is 

open. So, it is automatically an open mapping. Recall that a continuous surjection which is an open 

mapping is also a quotient map. 

Therefore,  will be a quotient space of . In general, if you have    a function,  and a 

point ,  we call the set   a fibre over . This is a general notation;  a general 

terminology. Fibre of a map means inverse image of a point under that map.  If  is a local 
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homeomorphism, the fibres of f are always discrete. Look at the fibre, take two points there. Each 

of them has a neighborhood homeomorphic to a neighborhood below of the point y, each of them. 

If they had a non empty intersection, then this would not have happened because under  two of 

them are coming to the same thing that will be a problem. The same f restricted to this open set, 

restricted to this open set is a homeomorphism. So, therefore the two open subset that you have 

taken above must be disjoint automatically. So, this happens for every pair of points which just 

means that you know you can do for single point and everywhere else. So, this just means that f 

inverse is f inverse of the single point y is a discrete set. 

[Editor’s note: Actually, the proof is simpler than as described above. Given  and an 

open set  of  such that  is injective, it follows that  is also 

injective. Therefore ] 

So, in  the subspace topology  is a discrete space. In particular, the fibres of the covering 

projection are discrete. This fact is going to play a very important role in what we are going to 

study. These are some few immediate consequences of definition that we have done namely the 

entire  is covered by evenly covered open sets. So, I am repeating a few of them here. 
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Given a covering projection  the cardinality of  is a constant as  varies inside any  evenly 

covered open set. Because, for that open set , you look at the inverse image it is disjoint union of 

open sets, each of them coming bijectively to the set . Therefore, for each point there are exactly 

as many points as the indexing set for this disjoint union. 

So, what does this imply immediately?  The cardinality of  is locally a constant function. 

In an open subset it is a constant. Suppose now ,  is connected. This kind of topology you must 

be familiar with already, that every locally constant function on a connected space is a constant. 

Connectivity has to be used strongly here. 

A locally constant function will be constant if  is connected. So, in particular this just means that 

if you start with a connected space  then take a covering  ,  then inverse image of 

every point has the  same cardinality. That cardinality is called number of sheets of  If this 

cardinality happens to be a finite number , then we call    a finite covering. 

So, here is an example:  . We have studied it earlier as a example of a quotient map  perhaps, 

self-quotient of  onto itself. This  is a typical example of a finite covering, where the total space 

and base spaces are the same. This map is  n to 1, n points  in   go to the same point. No matter 

what point you take. 

Take any point in . The  inverse image has  exactly n points. That does not prove that it is a 

covering.  But you can show that   is a covering. So, now let us workout few more examples 

properly.  
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One  simple thing is, if you take identity map, it is a covering. Next, you can take any 

homeomorphism, that is also a covering. Those things are trivial coverings, they do not give you 

much. A typical example of covering projection is already familiar to you namely the exponential 

map, ,  which you can write  as ,  (or ,   according to your fancy;  

multiplying by    is just a normalizing factor, that is all). 

Fix a  ,      omitted. Then take  .  I have fixed , and  removing  its 

image  point under the  exponential function. Now the inverse image of  is the disjoint union of 

open intervals   It is of period . Here  I have just taken 

 That is why I get multiples of  here. If I take the first map ,  then these 

interval would be  

Restricted to any of these interval's,  exp  is a homeomorphism. Therefore  is 

evenly covered.  Keep varying this ,   will give you the covering of   (In fact,  just 

two different values of are enough.) Therefore, this will tell you, if you have verified it, actually 

we have verified this one already and we have used this property before, so, this shows that 

exponential function is a covering projection.  
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And this picture also perhaps seems familiar to you. Here for the function  I have thrown 

away this point , let us say. In fact, I have taken only half circle here, what are the inverse 

image of this arc?  It will be , jumping by intervals of length.  

The inverse image of this point, this is , the inverse image  will be the set of  all integers. 

So, when you throw away all the integers from , the   exponential functions restricted to each of 

these intervals to this arc is a homeomorphism.  The full inverse image of this arc will be union of 

all these intervals,  this part we have already seen.   
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In similar way, and it is not hard to do this one namely, for the function ;  to show that it is 

a covering projection from  itself.  is what? non-zero complex numbers. Restricted to 

circle ,  it will go into the circle itself, namely, unit circle mod z is 1, mod z power n is also 1. If 

you do not put that condition,  any non-zero thing will go to a non-zero thing and it will be n to 1 

mapping. You can work out neighborhoods, how they, how small neighborhood should be taken 

here and then look at the inverse image there will be n copies of that each of them mapped onto 

the same open subset here.  
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If  is any subspace of , I can take inverse image of  under  that will be a subset of . Now 

you take  restricted to . That itself will be a covering projection. What you have to 

do? Take an evenly covered  open set  inside . Take intersection of that with ,  that is all.   

 will be even covered by this restricted function. 

On the other hand, you cannot do this by taking a subspace of the top space .  Then you have to 

be careful. In general, if I take  a covering projection and  , the restriction map 

may not be a covering projection. So, what will happen?  This is an  interesting question.  We will 

see it later on.  
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To construct local homeomorphism, we said a covering projection is always a local 

homeomorphism, but to construct a local homeomorphism which is not a covering projection is 

very easy. Just local homeomorphism onto subset would not give you covering space or covering 

projection. So, if we take the restriction of a covering projection  to any open set U 

inside  it will be automatically a locally homeomorphism. 

However, by choosing U very badly in some way you can destroy the covering space property. 

The evenly covering property you can destroy in many ways. To retain it is more difficult, 

destroying is automatically happens, namely, all that you have to do is for example, just omit one 

point from  that is an open set (provided   is  So now, if you restrict, this will never be a 

covering projection. Starting with a non trivial covering projection , the restricted map 

  will never be a covering projection. Verify this one, then you will 

understand better the  covering projections.  
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So, I want to tell you some more thing about the role of path connectivity here. Path connectivity, 

local path connectivity are part and parcel of algebraic topology. We assume that  this one 

condition always.  So, here local path connectivity is very important in the case of covering 

projections so that is what I want to tell you. 
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So, this is the theorem. Take a continuous function , where  is now locally path 

connected. Then something nice happens, namely, the map  is a covering projection if and only  
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on each component C of , component means path component, the restriction map  

 is a covering projection.  

Next, if  is a covering projection, then for each component  of , now see again, I am taking 

path components,  the restriction map  is a covering projection. So, under restriction 

map the covering property is not disturbed  if   is a path component. And in that case,   will 

be a path component of . 

The point is that you have to take a component, if you restrict just to a path connected space it is 

not, it is not true. Just like the other way something is path connected by removing a point it may 

still be path connected then it will not be a covering projection. But if you remove a point, it would 

not be a path component in the original thing. You have removed something. It would not be a 

path component. So that kind of counter example is not there. But this is a theorem and actually 

we have to prove this. 

Namely, the second part is very important, the first part is easy because you are coming from 

bottom. You are taking its component here and then you are taking full inverse image. So, this is 

not so difficult. The second part is something which you have to doubt and so you have to pay 

attention to the proof of this one. So, here is the proof.  
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So, first part (1): if  is a covering projection for any subspace Y of , the restriction 

 is a covering projection. So,  one part  is easy. Conversely, suppose for each 

component   of ,  is a covering projection, let us say. The crucial thing here is 

that this  is locally path connected and hence each  is open in . Therefore, for any point in  

consider the path component  ,  which contains . Every point is inside a path component and 

that is an open set. 

So, if  is open in ,   will be open in  also. But this is a covering projection, so I can choose 

 to be evenly covered by the restriction.  Then since this  is a full inverse image it will 

contain . So, the same  will be evenly covered neighborhood for the full . 

Since every point is covered by an evenly covered neighborhood  it follows that   is a 

covering projection. So, this proves part (1) here. That is a easy part.  
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The second part (2),  first of all look at  , it  is an open set in . Why? Because,  is locally 

path connected, so,  is also locally path connected.  Path connected components of locally path 

connected space are open.  And  is an open mapping. So,  is an open set. Given, ,  

let  be a path connected open neighborhood of  which is evenly covered by . , 

such that  is a homeomorphism for each i. Then each  is path connected.   

And hence either  or  Therefore, if  is the set of those  for which , 

it follows that when you take restriction map , then .  Some of 

these Ui's will go away, the rest of them will be remaining fully inside.  And then they are contained 

in, not no part, no part of Ui will be there, either it is full or it is none. So,   is evenly covered by 

 also.   
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Finally, the converse of this one.  sorry, one more thing we have to show, namely that C is a 

component.  is path connected. Therefore  is also connected.  It is a component I have 

to show. So, let  be a point in the closure of   in   and  be a path connected evenly covered  

open neighborhood of  as above. Then one of the  has to intersect   because, 

.  The whole thing intersects  therefore but at least one of them has 

to intersect that is the point. But then that  in turn means that, that particular  is contained inside 

, because,  is a component. So, these components etc., I am working inside a larger spaces  

etc. and  is an open subset in larger space. And hence,    So, this 

intersects this one of them. So, it is inside C bar. So, V is inside C. So, if V is inside C, it shows 

that C itself is open as well.  

Usually, a component, you know it is closed. Now I have shown that every point in the closure of 

 has neighborhood which contained in C. So, it must be closed as well as open. Actually, I started 

with the closure point then show that the whole thing is inside in a whole neighborhood inside C. 

So, C must be open as well. If it is open and closed and connected it must be a component. So, that 

completes the proof of the  theorem. I think we will stop here today; it will take you some time to 

understand this one, that go more things next time. Thank you. 
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