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Hello. So, let us begin the fourth module today. In the first three modules, I have given a bird's 

eye-view of what this course is about and a little bit about algebraic topology in general. I have 

told you about certain big problems that cannot be solved and about certain millennium prize 

problems like Poincare conjecture which we cannot discuss in this course in any depth. So, 

today let me begin with  telling you about some other big things that we can achieve in this 

course, on the positive side.   
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So, this is called Brouwer’s Celebrated Theorems. There are two of them here. One is the 

Jordan-Brouwer Separation Theorem.  Jordan comes here for n = 2. For higher things it is 

Brouwer. That is why it is Jordan-Brouwer Separation theorem.  

Take a copy of   in ℝn for n ≥ 2. Then, the complement of this  , let us 

denote the copy of   by X, the complement of X  has precisely two connected components, 

and X happens to be the common boundary, common boundary. So, in the case of n = 2, a copy 

of  ; one calls it  a Jordan Curve, or a Jordan Loop. 

So, a Jordan Loop separates the plane into exactly  2 components. One is inside, another is 

outside. So, the inside region is called, inside is what?--- the bounded region. That is the 

meaning of inside region. There is only one bounded region and  only one unbounded region 

and the loop happens to be the common boundary of both of them. This has been completely 

generalized by Brouwer for all n. This theorem, we will be able to prove in this course. Maybe 

it will take some time but it will be proved, that is the  whole idea.   
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The next thing is Brouwer’s Invariance of domain. Invariance of domain means ----you know 

what is the meaning of domain in  calculus or complex analysis.  It is an open and connected 

subset. Open and connected subsets of ℝn are called domains. So, if  something is a domain in 

some ℝn that n is invariant. That is the  whole thing. That is the whole idea of Brouwer’s 

Invariance of domain. 

Suppose, you have U and V, some subspaces of ℝn and they are homeomorphic. If one of them 

is a domain that is one of them is open, then the other one is also open. That is like saying that 

invariance of domain. If something is a domain, then homeomorphic copies of that inside the 

same ℝn, they are all domains.  

As an easy consequence of this, if you change the dimension, then they are not all domains ---

can also be seen; it can also be observed, namely, for n not equal to m, ℝn will never be 

homeomorphic to ℝm. So, this corollary is an easy corollary to theorem 1.3. I will let you think 

about it. Finally, we will solve this one. This is not, this corollary is not difficult from  theorem 

1.3.  
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Standard method of proof of these two theorems is to obtain them as  “not-too-difficult” 

consequences of singular homology theory. The singular homology theory will be taken up in 

a sequel to this course.  
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On the other hand in this course, what  shall we do? We shall obtain a proof of the Brouwer’s 

invariance of domain as a consequence of simplicial approximation and some combinatorial 

result called Sperner lemma. There are of course, purely point-set-topological proofs of this 

invariance of  domain which are much too long and difficult.  So called dimension theory books 

have been written on that.  
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Notice that mere homotopy equivalence is not able to detect the fact that ℝn and ℝm are not 

homeomorphic for n not equal to m, because both of them are contractible and therefore, they 

are homotopy equivalent to each other. So, how does homotopy help here? That is a strange 

thing no. It does. It should be noted that any known proof of purely point-set-topological 

invariance of domain is not too easy at all. All proofs are  somewhat quite involved and lengthy. 

But you can look into Engleking’s book and Hurewicz-Wallman’s books and so on.  
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The general purpose of this course is to take a few steps which leads the students to the 

doorsteps of such great results in topology. We may not be able to see much of them, but once 

you have a couple of courses like this, you will be able to access all these results. Algebraic 

topology tools have been invented and sharpened by masters while attempting to solve 

topological problems.  

This requires the reader to master a formidable amount of technical tools even before 

understanding what the master is trying to do; master is trying to work out. We have tried to 

minimize this with shortcuts without missing out on important points which can have a certain 

permanent value. So, this is what we are trying to do in this course.   
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So, in what follows we shall keep acquiring new tools and sharpening the old tools, so as to 

solve problems mentioned in question number 1 and question number 2 above and many other 

related problems. So, this is the summary of whatever we want to do. So, we will now start 

doing them one by one.  
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So, since we have already some technical definitions and so on, here is a set of exercises which 

you should try to solve them on your own and submit and the tutors will check them and you 

know later on we can even discuss it in one of the open sessions, live sessions. But before that 

you have to submit and you have to participate.  
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So, let me go through these exercises. First one is,  (these are all simple exercises,) to show that 

a contractible space is always path connected. Second one is, I have told you that there are lots 

of topological properties which are not homotopy invariants, which are not preserved under 

homotopy. So, give a list of this, say  a dozen topological properties--- No, half a dozen. 

Show that composite of two homotopy equivalence, is homotopy equivalence. Show that 

homotopy equivalence amongst spaces is an equivalence relation. I have already told you how 

these things are but now you have to write down full details of these exercises.  These Exercises 

are  only for practise. There is nothing very hidden in them.   
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Now come to a few more exercises. First you have f: X → Y and g:Y → X, such that f ○ g and 

g○ f are homotopy equivalences. I am not saying that f and g are homotopy inverses of 

each other. The composite, I am not saying that the composite f ○ g is homotopic to the 

identity of Y nor g ○ f is homotopic to the identity of X. But they are themselves homotopy 

equivalences. Then show that f and g are homotopy equivalences.  

So, I caution you. I do not mean that g is homotopic inverse of f, it may not be, it may be. It 

does not matter. So, that is not the question here. Here you have to think a little bit. Keep 

thinking. When I want to use one of these results in the exercise, given the exercises, by that 

time I will give you the solutions. But till then,  you keep thinking about it. So, whenever you 

get a solution, you can submit it. The tutors and I will check them.  

So similarly, the next problem here: f : X →Y; g : Y → Z be such that f and g ○ f are both 

homotopy equivalences. Show that g is a homotopy equivalence. It is like cancelling one 

of them. If f is invertible, g ○ f is invertible, then g is invertible.  So, this is algebra of 

homotopy equivalences.   
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Let us begin with the  brass-tags. We want to do whatever we want to do. We have to start 

doing them. So, this section will contain a definition of the fundamental group and its 

fundamental functorial properties. We shall also introduce two best ‘methods’ of computing 

fundamental groups and use them to compute the fundamental group of spheres; the neat 

objects. Once you have ℝn, they are simplest one; they are contractible, they do not have much 

homotopy properties.  

The next objects are the spheres in them, unit spheres in the Euclidean spaces. Extensive study 

of these matters will be taken up later on. This is just now a trailer again to give you a flavour 

of what kind of things are coming up. So, that is what this section is about. But it will already 

be introduced to you,  slightly deeper into the subject.   

69



 

(Refer Slide Time: 13:22) 

 

Recall that a path in a space can be thought of as the track of a moving point. The fact that we 

may move from one point to another point. It means what? Moving means what? In a 

continuous way within a space. That is described by saying that the space is path connected. 

You can go from one point to another point, if it is path  connected. Path connectivity is a very, 

very old concept and which  is very fundamental in all topological aspects.  

We know that the set of path components of a space is an important topological invariant. We 

have introduced it as homotopy classes of maps from single point into X--- the set of homotopy 

classes of maps from a single point into X.  
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Now, given a path connected space, that is,  suppose X is path connected. We are now interested 

in looking at various different ways in which two given points may be joined. For example, 

suppose X is a two-dimensional disk, -say the  unit disk. Then given any two points, the natural 

way to join them is to take the line segment.  

If we are not so economical there will be a lot of nearby paths, but they will all be in some 

sense the same even if you go a little bit away from the straight line. And straight lines are not 

always possible. You know paths are not always made up of straight lines, except perhaps in 

deserts. But we keep the direction the same. So, it is more or less the same in some sense. So, 

that is the meaning of being the same. Slightly they are away but you know like diversions in 

a given route when there is some road construction going on. They are homotopic paths. 
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But, let us look at the picture . In , let us say, take any two points. Then I want to say that 

there is no straight line now, but there are two different arcs from one point to another point. 

So, these arcs, you know, you cannot change from one arc to another arc continuously. So, how 

to make this idea rigorous? That is the task  we now have. 

A path in X is described by a continuous function from a closed interval, which you have 

standardized as , the closed interval [0,1]. The closed interval [0,1] itself is contractible. 

Therefore, we know that any path, namely, a function from  to X must be  null homotopic. We 

have seen that once you have a contractible space, any continuous function from a contractible 

space into any other space is null homotopic. 
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So, the homotopy that we have introduced is not very effective in distinguishing the two arcs 

that are there in  which we want to distinguish. So, we need to sharpen the tool here. Then we 

want to study the paths  as such. That is the meaning of sharpening a tool. We have the 

homotopy concept, but we want to modify it as per our requirement.  
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So, we fix two points x0 and x1 belonging to any space X. You can assume that X is path 

connected. There is no other way and look at the space of all paths  from x0 to x1 inside X. So, 

I have denoted  it by Ω(X, x0, x1) all paths. So, this is the collection of all paths. They are 

starting at x0 and ending at x1.  

All of them are in X. So, such a space can be given a neat topology what we call  compact-

open topology. What is the meaning of compact-open topology? I will tell you later on. There 

is some topology. We may then look at paths in this space and  path component of this space. 

This turns out to be nothing but classes of homotopy in this space namely I have to change 

from, I have to change the given path to another path but all the time we are in this space means 

the end points x0 and x1 remain the same. So, homotopy keeps the end points the same.  

So, this is the extra condition on  homotopy that we are going to introduce, a modified 

homotopy that we are going to introduce. So, once we see what we are trying to do, then we 

can do that. We have to understand what we want to do first of all. So, this leads to the concept 

of fundamental group of the space X.   
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Well, let us introduce this concept of path homotopy. Following the simple common-sense rule 

of tracing one curve until its end-point and then tracing another curve which begins at that 

point, we get a binary operation on the set of all loops at a given point in space. To take a point 

and then look at a loop at that point. Means end point and the starting point are the same: x1 is 

equal to x0.  

Take that special case. Then take a loop, take another loop. You can compose them by this 

method. It is called  concatenation of the loops, which is just an extension of homotopy that we 

have already done.  The constant loop, you know, you see any constant loop; it is a funny thing. 

Geometrically, you would like a loop as a continuous function from an interval into the space 

X with the  endpoints the same.  

But if the endpoint, not only endpoint, all the points are the same? that is also a loop by our 

definition. Why do we allow this one? This is a very nice thing to be allowed, this one, the 

constant loop. I would like to say that it will act as a two-sided identity for this operation. 

Because, after you trace a curve and come back and then you do not do anything. You stay 

there all the time; it is just like you have traced that curve-- that is all. So, that is the meaning 

of  this constant loop being the  identity element for this operation. If the right side is identity, 

the left side is also identity.  

But there are problems, we are just now making a demand; making, anticipating something. 

How to do is one thing-- trying to do is another.  We want to sharpen our definition of 
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homotopy, how to make these things work  and finally it should work. So, another thing is, if 

you trace a path in the opposite direction, it should be treated as the inverse of the path. You 

have gone along this path  but finally you have come back the same way. So, it is as if you 

have done nothing. So, this kind of thing one has to do.  
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However, our expectations are met only when we pass on to the homotopy classes of loops. 

Otherwise as functions they are never the same. So, this is what we want to emphasize. We 

obtain a powerful notion namely fundamental group only when we go to homotopy classes of 

loops. So, this is going to play a very important role in the topological behaviour of  a space. 
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So, let us make a formal definition of path homotopy. Before that let me make a formal 

definition of a path also now,  so that we have no confusion later.  A path is just a continuous 

function from a closed interval from the closed interval 0,1 to X. All the time, we have fixed 

the domain to be the interval 0,1 closed interval 0 to 1.  

If ⍵ is a path, ⍵(0) is called initial point. ⍵(1) will be called the terminal point. Both of 

them together can be called end-points. When the end-points coincide, such a path is 

called a loop and what is the base point? The base point, namely, ⍵(0) which is same thing 

as ⍵(1). So, these are some basic terms. I have defined what is the path, initial point, 

terminal point, end point and a loop.  
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So, let us now make a path homotopy, definition of path homotopy. Take two paths, with the 

same end-points. ⍵(0) is equal to 𝜏(0) equal to x0. Let us call, ⍵(1) equal 𝜏(1) equal to x1. Then 

a path homotopy from ⍵ to 𝜏 is first of all a homotopy- homotopy of these maps; remember if 

your map is from X → Y, then homotopy was taken X ×   → Y.   

Now, the maps are from I → X, so homotopy will be from   → X. So, H is a continuous 

function from  →   X such that when you take H (0,s)  for all points s-- the starting 

thing, is x0. H(1,s) for all points s is x1. So, these two points do not move at all. The second 

coordinate showing that it is moving. They do not move at all. For every point 0 < s < 1. 

H(t,0); it is the first part, that is ⍵(t). H( t,1): it is the last path; it is  𝜏( t). So, if this happens 

then we call ⍵ is path homotopic to 𝜏. Alright?  And we use a simple notation ⍵ ∼ 𝜏. A general 
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notation for homotopy was there is a twiddle and an arrow. Remember that. Here; this is a 

different notation. So, this is a different equivalence; this is a  different symbol.  
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Here is a picture, starting with  ⍵ here ending in 𝜏 here. End-points are fixed here. So, this is  

you know, for t equal t1, t2, t3, various stages shown by dotted lines. This is how homotopy is 

supposed to look like.  
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Fixing two-points x0 and x1, on the set of all paths in X with initial point x0 and end point x1, it 

is easily seen that path homotopy is an equivalence relation. The proof is exactly the same as 

the proof  equivalence of homotopy of functions.    We have now taken end-point being fixed 

at same thing.  
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So, every time it will fix the same thing. Transitivity, reflexivity and symmetry, all  you can 

verify the same way. So, path homotopy is an equivalence relation amongst the class of paths 

which have same end points. That is what is important. Notice that path homotopy is more 

restrictive than the homotopy of maps which you have defined in the previous section. 
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So, it is natural that both the properties of the domain and the codomain will influence the 

nature of maps between them. We have witnessed this in theorem 1.1 namely if the domain is 

contractible, then the function is null homotopic. Similarly, codomain is contractible, any 

function to that is null homotopic. Right? 

So, even for paths and path homotopy, there must be some such thing 

happening. Irrespective of where I am taking  x ∈ X,  X is the space, 

I am taking the paths inside  that. Let us first understand, what are 

these essential homotopies  between paths and of course end-points 

must be the same. So, let us first take away this path. After that we 

can talk about what happens inside X. Right now, irrespective of what 

happens to x, where x is,  this path homotopy must have certain 

properties. Let us understand that.  
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So, this leads us towards what is called  re-parameterisation. Take a path ⍵: I → X. A re-

parameterisation of ⍵ we mean a path  ⍵○𝛼 where 𝛼 itself is another map from I to I such that 

0 goes to 0 and 1 goes to 1 under 𝛼. Any path and then you change it namely  ⍵, instead of  

⍵( t) you take  ⍵ ( 𝛼( t)). That will be called re-parameterisation of the path ⍵. 

One of the simplest things is the image of ⍵ and image of ⍵○𝛼 does not change. It is the same 

thing. So, from a layman's point of view both the paths are the same, but from a 

mathematician’s point of view, they may not be the same. But in fact, they are not the same if 

𝛼 is not identity map. But the layman's point of view should be respected and what happens is 

these two paths will  always be path homotopic to each other. So, weaker equivalence is there. 

Any re-parameterisation will not produce any new paths in that sense. They will all be path 

homotopic to the original omega. Let us see how?  
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So, this is how. All that I have to do is, look at this homotopy  A( t,s).   A(t,s) equal to  

(1- s)𝛼(t) + s t. So, I am joining t and 𝛼(t). Where are they? They are inside the closed interval 

[0,1].  Therefore, line segment makes sense 1- t times this  plus s times that one which is again 

inside the closed interval. Therefore, this gives you a homotopy. When you put s = 0, it is 𝛼(t). 

When you put s = 1, it is the identity map t going to t. So,  𝛼 is homotopic to identity map.  

Relative to the end-point 0 and 1.  No matter what s is when you put t = 0, what do we get?  

𝛼(0) is also 0; t is 0. So, A(0,s) is 0 for all s. Similarly, t =1, 𝛼(1) is 1 and t is  

1. (1- s)1+ s is equal to 1. So, this homotopy is a homotopy of the identity map with alpha, 

keeping the end-points fixed.  

Therefore, when you apply ⍵ to it, what you get? You will get the homotopy of ⍵ ○𝛼 with ⍵ 

composite identity which is ⍵. No matter what ⍵ is or no matter what 𝛼 is, re-parameterisations 

of all paths are path homotopic to the original one. This is the concept. 

Now, I want to warn you,  you might have studied in differential geometry or even in complex 

analysis and so on, when there is a re-parameterisation, first of all those maps are not just maps, 

they are smooth maps or piecewise smooth maps. Similarly, the re-parameterisations must be 

smooth maps with an extra condition namely the derivative at every point must be positive. So, 

this is the standard condition in differential geometry. Also, in integration theory and so on in 

complex analysis.  
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But, in algebraic topology, we do not need those conditions. We are taking all continuous 

functions and we do not require smoothness, only end-points are the same is enough for us. If 

these conditions are all satisfied, there is no problem, of course. We do not need to bother about 

them because our spaces are arbitrary spaces. The derivative may not make sense there. So, I 

will stop here and we will resume from this point onwards in the next module. Thank you. 
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