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So, today’s topic is the big theorem, Bruower’s invariance of domain. We have already seen last 

time, a weaker version of this theorem, namely for n not equal to m, the Euclidian space  is not 

homeomorphic to . This will be a consequence of the big theorem, that what we are going to 

prove today, namely, if X and Y are two subsets of   , homeomorphic to each other and if one 

of them is open, then the other one is also open. 

So, what you can do is think of  as a subspace of  , for    viz., via the 

coordinate inclusion . Now you have two subsets, one is 

 and another is .  Both of them are subsets of . If they are homeomorphic 

to each other, since the whole  is open in , it should follow that   should 

be also open in .  That is very easily seen be not the case. You can easily show that coordinate 

inclusions are not open sets, they are closed sets if at all but definitely not open sets. It is very easy 

to see. 

Therefore,  and  are not homeomorphic. So, that will be an easy consequence of this big 

theorem. However, how have  we arrived at it? We arrived at it by showing that   are not 

even homotopy equivalent to each other. This we would not have got from the big  theorem, Sn 
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and Sm are not homeomorphic we can prove from this theorem, but they are not even homotopy 

equivalent to each other, is stronger. 

So, that step was achieved by  going through Bruower’s fixed point theorem and  BFT in turn was 

proved via   Sperner lemma.  Sperner lemma   is not implied by this big theorem. So, you must 

know there is  this justification for proving those results  separately. So, let us now prove the big 

theorem. This proof wil actually use BFT also. However, the key lemma is a strengthening of our 

homotopy simplicial approximation, namely controlled homotopy lemma. And that will give you 

a topological criterion for a point to be an interior point of a subset in . 

I am talking about a subsets of . Take a subset  of . Whether some point  is an interior 

point of  or not,  we will give you a topological criterion for this question.  Topological means 

what?  The criterion  will be an invariant of the homeomorphism type of , whereas an interior point 

is a concept of an embedded object  as a subspace of .  So, what is, what is its interior? If you 

take just a topological space , just like that, interior of  is the whole .  There is no problem.  

But X as a subset of  may have  different interior. 

However, this is independent of how X is contained  is an is the gist  of this thing. So, that is 

what we are going to achieve, which is actually much more stronger than invariance of domain 

itself, invariance of domain we will be deriving it as a corollary, as a consequence. So, this is the, 

the general idea and what is achieved  in the proof of this one. 

So, let us now go step by step.  As I told you,  the key lemma is whatever say, key step is lemma 

6.6 which will lead to another theorem 6.8, I will state it separately because it seems to be much 

more stronger, in some sense not exactly, than the Brouwer's invariance of domain itself. So, this 

lemma is the following.  
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Let  finite simplicial complex, such that its  dimension is less than some number m. Take a subset 

 which is closed inside .  Given any  continuous function  (  is the 

unit disk) such that ,  the lemma says that there exists a homotopy 

 of this function , namely, ,  this homotopy is 

relative to  which means the points of  are  fixed throughout the homotopy and the end result 

 tkes values inside   

In short , you can say that, a function like this, when the dimension of  is smaller than m, such a 

function can be homotopically pushed into the boundary completely, and the  homotopy is  relative 

one , controlled one.  So, that is the way to understand this one. The proof of this itself takes some 

time. So, that we will be postponed  for the next time. However, we shall assume this result and 

go ahead towards proving Brouwer's invariance of domain.  
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So, the first step is a ready-made homotopy theoretic corollary. Now we will take a subset,  is a 

close subset of . Assume that this n is less than m (so that  m minus 1 is than m minus 1 that you 

have to understand). Every map  can be extended to a map  

Note that if you replace this codomain  by  etc.  this is nothing but Tietze’s 

extension theorem. But instead of that if you have a round sphere here, this is not an easy thing 

nor the result so general,viz, you require some condition on m.   But this comes immediately as as 

a corollary to the above theorem. So, this is homotopy theory now, you see,  the  can be extended. 

Like we told you that the homotopy theory, right in the beginning consists of this kind of things 

extensions and liftings. So, here is the first time you are seeing  such an example very clearly. That 

a map defined on a closed subset, any close subset can be extended to the whole space provided 

the extending space,  the domain is itself is of smaller dimension than the  codomain sphere.  

Without this condition, it is even false. 

In a way, this resembles Tietze’s extension theorem,  Tietze’s extension theorem will be used here, 

how? You have a map from , you can include it in  So, you have a map 

 Once we are in  ,   we can appeal to Tietze’s extension theorem, which  

gives you an extension to the whole of   because   is normal, that is all. 

If you might have seen Tietze’s Extension theorem  only f for real valued functions, but then this 

can be, you can take this as various coordinate functions, first of all   can be replaced by  . 
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Then there  are m coordinate functions, . To each of them  you apply TET to get .  

Then you put them together  Then you go back to .  So, finally, you conclude 

that   can be extended to the whole of   That is the first step.  

Now, you take .   as a simplicial complex has   Therefore,  I can apply 

this lemma, I started with the map here, here instead of f, I have alpha. So, H be a homotopy given 

by the above lemma, see alpha is given on A but f is an extension, but is taking values inside , 

to push it back to  by the homotopy H, that homotopy is a relative homotopy, controlled 

homotopy. So, it does not change the function on A, which is alpha. Therefore, the result 

  is equal to  So that is the proof of this corollary 6.3. 

So, we will use this one now, that any function  here can be extended to the whole of   

provided this n here is less than or equal to m minus 1. So, the homotopy theoretic background  is 

now completed. Now, we have to do purely point-set-topology. So, I recall a few things here, just 

to make sure that we do not have any confusion. 
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These are elementary things. Take any subset X of a topological space Z.  A point  x inside X is 

called a relative interior point of X, if there exists an open subset U of Z, such that  

  Of course, x must be a point of X, if it is an interior point. Not only that, there must 

be a neighborhood, this neighborhood is not in X, it should be in Z, of x which is contained in X.  

That is the meaning of relative interior point of X. 
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A  point x belonging to Z is called relative boundary point of X, if it is not a relative interior point 

of X,  nor a relative interior point of the complement, .  So, such a thing is called as boundary 

point, which is the same thing as saying that every open set around x will intersect both X as well 

as its complement. So, I am just recalling, what is the meaning of boundary point and interior  

point.  The adjuctive `relative’ may be redundant but we have put it for emphasis.   

Note that we are not looking at manifold theoretic boundary, for example, take  as a manifold.  

Its boundaries is . If you include it as a subspace of , then also it is true that this boundary 

is equal to the relative boundary that we have just defined.  That is a different concept of boundary. 

So, that is not the boundary that we are referring to here, it is relative interior, relative boundary is 

clearly an embedded notion here.  
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So now, a relative boundary point of X has the property that every neighborhood intersects both   

X and its complement.   That is what I told you.  X itself is open in Z if  all of its points are relative 

interior points. That is easy, yeah?   

The following theorem  characterizes intrinsically the relative boundary points and hence the 

relative interior points also. Whether you give the characterization for interior points or boundary 

points, it will be the same, it will be read both of ways, both ways, because it is a characterization 

of a subset of a Euclidean space.   What I am telling you is perhaps the strongest form of Bruower’s 

invariance of domain. Because,  this characterization immediately implies  Bruower’s  invariance 

of domain.  Obviously then  it is   stronger than BID.  
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Let us look at the  statement of this theorem.  Take a compact subset  of .  Take a point x in 

X.  It will be a relative boundary point of X, if and only if for every t positive, there exists a r 

smaller than t, ,  such that every continuous function on the complement of this open 

ball,   to  has a continuous extension over the whole of X.  Here,  please note that 

the exponent   is the same.  

So, the statement is about the compact subsets, but it can be easily extended to non-compact spaces 

also. So, let us concentrate on compact set, concentrate on other parts of the theorem rather than 

why X should be compact and so on. Compactness just helps a bit.   So, here  is the open 

ball of radius r around x. So, there are if and only if parts.  
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So, I am going to prove the implication here. Take . This is just a short notation 

every time instead of writing this one for some arbitrary r.  Take any function  

I will extend it to the whole of X. That is enough because then given any t can choose r to be 

smaller than that and  apply whatever I have done here. So, look at the function  restricted to   

 

Now, this is A is a closed subset of  and this is taking place inside . So, this can be 

treated  as subset of  ,  a closed subset and  this gives a map . Therefore, by 

previous corollary, there is a continuous function  : which extends . on the  

So, this is the  result  that we are using here,  the corollary 6.3. 

So, now, take a point .  How can  I say this? Because  is a relative boundary of , 

that is what we have assumed and hence  every set  around  will intersect both X and its 

complement.  So take a point inside here which is not in X. Now, let  be 

the radial projection.  The radial projections are defined on the entire of  minus p. 

What is the meaning of radial projection? Every point  of  lies on a unique ray from the 

point  and passing through a unique point , somewhat  like a polar coordinates with 

 is  the origin. Put  So, so that eta is the radial projection. After that, all that I do is define 
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 by this rule:  for all points in  and  for all points 

 in the closure of  inside  

When   belongs to intersection of these sets viz., on ,  then these two will 

coincide because of what the  on the boundary.  If  is a point on    then 

 itself.  

So, on the intersection they coincide, both of them are close subsets, therefore, h is a continuous 

function. And obviously, it is an extension of f. So, what we have done is, every function f defined 

on the complement of a neighbourhood can be extended to the whole of X, assuming that X is a 

relative boundary, notice that relative boundary has been used in the choice of the point   
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Here is a picture. The point  is an outside point, this is the ball .   is a point here in X. Well, 

I have drawn it on the boundary. So, you may ask oh you have already put it on the  boundary. It 

is a boundary point in what sense? I am using only point set topology here, this  open ball will 

intersect both X as well as complement of X, no matter what r is, x is in the  boundary of X, that 

is all I am using. So, so look at this projection map. And whenever this ball intersects this, this part 

for example, in both X as well as in the boundary, where does this point go? It will go to this point 

only. If the point is here, where it will come? It will come to a point here, that is a radial projection. 

Every point here will come here. So, I am taking this radial projection which is defined on the 

whole of  minus p restricted to x. So, this will map like this into this one, points here will be 
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mapped here and on in any case the entire thing will be contained inside .  The projection onto 

this one, this is the picture of the radial projection, so one way we have proved, we have to prove 

the other way around now. 

(Refer Slide Time: 23:40) 

 

Suppose this criterion is true, then I want to prove that  is a relative boundary point.  Instead of 

that what I am doing is, if it is not relative boundary, it is the point of X not a relative boundary 

means, it is the relative interior point,  then the criterion is false, namely I must find  such 

that no matter what r, I take, smaller than t,  there will be some function which cannot be extended. 

You  have to read the negation  of that statement correctly. So, take X to be a relative interior point, 

let t be  any positive number.  

 

Indeed what I am going prove is somewhat stronger. Namely I  will give you map 

 I will choose t>0 such that the close ball   Then I will show that 

for 0<r<t, this map restricted to   cannot be extended over .  This will prove the claim.  

So,  let   This is again the radial projection, y minus x divided by norm of y minus 

x. If x  is the origin, you would have just taken y divided by norm y. We have studied that one, 
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 . So, now, because X is treated as an origin, so, you have to say y minus x divided by   

the norm . 

  Now suppose  The function  clearly restricts to a map  It 

remains to see why we cannot extend it over X continuously.   

Suppose, you can extend  to the whole of X,   say there is  map   which is an 

extension of   I look at this new map  given by   Take    a 

vector  of modulus less than or equal to 1, multiply by r and add  You will get a point of the 

closed ball  That is contained in  So we can take   But now suppose  

 Then  Therefore,    This means  is 

retraction of  onto  , which is absurd, a contradiction to our theorem 6.5 that we have used 

to prove what? Brouwer's fixed point theorem.  

 

So, we are using Sperner lemma also indirectly here, so we could not have proved this theorem 

without that.  

Thus, we have proved that f restricted to x minus U cannot be extended over X. Extension, if there 

is such an extension, what we have proved is that there is a contradiction that Dn retracts to its 

boundary. Now we will take any r less than t, then take V equal to Br of x, then f restricted to v, 

the same function cannot be extended because even f restricted to the boundary in a smaller thing 

cannot be extended. 

If V is Br of x, then V is a smaller subset than U, X minus U f restricted even that cannot be 

extended. So, this cannot be extended obviously. If there is an extension of this one, then there 

will be extension of f of x minus U also, but just now we proved that f of, f restricted of X minus 

U cannot be extended. So, this completes the proof of the theorem. Let us stop here and we will 

complete the proof next time. 
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