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Welcome to Sperner Lemma. Today, we are going to do a purely combinatorial result, one single 

result. As a result in topology, but a of a  combinatorial nature, it has a very distinctive role, its 

landmark result which opened the floodgates for many other combinatorial results inside topology, 

and vice versa. It is very simple to state, it is stated for a particular simplicial complex namely, the 

standard n-simplex. So, that way it is very simple, simplest object as such. 

What you have to do is to take any subdivision of the standard simplicial complex ,  and take  

a simplicial map  where  is a subdivision of .   One more condition you have 

to assume on this simplicial map. It is a simplicial approximation. Restricted to the boundary 

complex ,  remember that boundary complex of  triangulates the sphere   of (n-1) 

-dimension.  Take the inclusion map of   into  . That function is simplicially approximated 

by  on the boundary, inside the simplex it would be any simplicial map. Then the number of n-

simplices of , of the subdivision, which are mapped on to the entire of , this number is odd. 

In particular there is at least 1.  If there are 2 then there will be at least 3. This number is odd, that 

is the meaning of this. In particular, there is at least 1 and that is very important. Instead of proving 

that this number is at least 1, we are going to prove that it is odd. 
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So, what is the meaning of that? We are only counting everything mod 2, and then show that it is 

1. So, even the counting is done mod 2, we are not bothered about the actual value  whether it is 

in hundreds or thousands. So, this is what we are going to do. The proof is by a  combinatorial 

method known as  `counting in different ways’. Two different ways, maybe three different ways 

and so on. So, I am going to state another version of the same lemma, Sperner lemma, which I am 

going to state  and that will be much more elaborate and that will give the proof of this lemma, 

once you prove the latter lemma.  So, that is the idea of the proof. 
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So, here is an expanded version of the same lemma. So,  is subdivision of  and  

is a simplicial map, no more conditions.  Now I am going  denote by L,  subcomplex 

 Note that there are (n+1) faces of  of dimension (n-1). In principle,  could 

have been chosen to be any one of them.   

For any n-simplex  of ,  I will denote , ( I am going to define various numbers here), 

 is the number of (n-1)-faces of  mapped on to  by .  You have fixed one (n-1)-face, of 

the codomain.  For any n-simplex  ,  let  denote the number of (n-1) faces of   which 

are mapped onto  Put s1 equal to the sum of all these ’s,  where  ranges over all the n-

faces of  . 

Next, let  denote the number of n-simplices  of , (this time n-simplices)  which are mapped 

onto  by .  Finally, there  is another number  ,  the number of (n-1)-simplices of the boundary 
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of  which are mapped onto  by . So, three different numbers, we are counting. The claim is 

that all these three are equal to each other, if you count mod 2.  If any one of them is odd, then 

other two are also odd; if any one of them is even, then the other two are also even. That is the 

meaning of this,  is congruent to  congruent to  mod 2. 
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So, let us prove this one, that will lead to Sperner lemma.  First note that, fix one n-simplex   in 

.   will be either 0, nothing is mapped on to  or it could be 1, only one of the (n-1)-simplex 

goes to  or it could be two of them, nothing more than that. Because you see, what is ? is an 

n-simplex. So, let us take for example. Put n=1.  Then I have to look at the two 0-simplexes, which 

are the two boundary points. So, these two points, none of them may go to that point, only one of 

them may go to that point or both of them may go to that point. That is very easy. Next  we take a 

triangle for example, n=2. There are three edges.  None of them may go over  only one of them 

may go over it.  If two of them go there, then the third one will have to go to single point, there is 

no, there is no other choice. The same way, in the general case,  if two of the (n-1)- simplexes, are 

mapped onto , the rest of the (n-1) simplexes  will have to be  mapped onto subsets with less than 

n elements.  Therefore, the first thing to observe is that   has only three possible values:   

Now, what is the meaning of   By relabeling if necessary, we may write : 

   It follows that  has no other choice than being 

equal to .   So,  iff . 

554



Now, the collection of all n-simplices   of  can be divided into three groups, depending upon 

the value of  =  0, 1 or 2; say, the three respective collections are   It follows that, 

if you count modulo 2,   and  will not contribute nothing to the sum . Only the class  will 

contribute, one for each member.  So, that is what we have. So,    which is sum of all ’s  

instead of taking all ,  you can take only those  , so each of them will give you 1, sum 

total is precisely now equal to  mod 2.   Because  corresponds to those  which are mapped 

onto, fully onto . That is the definition of . So, we have already proved that s1 is congruent  

to  modulo 2. 

Next,   also counts the number of (n-1)- faces  G of  which are mapped onto  is some sense.  

If   G is contained in the  boundary, then there is only one n-simplex  such that  . Therefore, 

G is counted at most once. On the other hand,  if G is not contained in the boundary of  then 

there will be precisely two n-simplexes  of  such that .  So, either G will be counted 

twice or none at all in the sum  Therefore, cutting down all these entries,  leaves us with only 

those G which are in the boundary of .  On the boundary  a  (n-1)-simplex  face  occurs as a 

face of an n-simplex only once. The interior thing will occur exactly in two different places. Two 

different simplices. This the important geometric fact that is used.  

 So, when you are counting  modulo 2, those things will not contribute anything. So, this last thing 

tells you that cutting all these entries, the sum total is actually  congruent   modulo 2.   Thus we 

have proved   that s1 and  and  are congruent to each other. 

If you still have difficulties in uderstanding the above argument,  what you have to do is, do it for 

n equal to 1, where it is completely obvious. You work it out, you have to read carefully, I have 

read it in the beginning at least three times and now I have taught it ten  times. So, that is a different 

thing. So, everybody has to work it out on their own. do it for a single edge, you have to cut it in 

two number of edges, number of edges because it is subdivision you have to take. And then work 

out what happened, what is happening to understand these numbers  , . 

If you still have doubts, do it for a triangle, the next, next stage. You can see what happens. Beyond 

that, you do not have to do, it is not easy either. After that you have to do, by that time you must 

be very, very confirmed that this argument is works. Now only logic will remain there, after that 

no, no pictures. 
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So, now we can prove the Sperner lemma now, by induction.  Because we have a passage from  

 to  through the above lemma.  That is a whole idea. So, for n greater that equal to  1, let  

Cn denote  the statement of Sperner lemma. Accordingly, we shall temporarily denote these 

numbers  by  respectively.  And we want to show that  mod 2. 

That is the Sperner lemma. The additional hypothesis on   comes into play now.  

For ,  this is very easy, namely   is 1. Since  is a simplicial approximation to the identity 

map on the boundary, (now you have use this hypothesis)   is actually the identity map on the 

boundary, in this case.  There is no other choice.  Now there are many 

layman kind of argument to see that  has to odd, you choose your own favourite and we leave it 

you. (Refer Slide Time: 14:22) 
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So, now, having shown C(1)  true, assume the statement for C(n-1) is true.  We shall prove C(n).  

Since  is the simplicial approximation to the identity when restricted to the boundary, if  is an 

(n-1)-face of   and  is the corrresponding subcomplex of   , then each (n-1)-face of   of  

  will be mapped inside .   In particular  only some of the (n-1)-faces of    are mapped on to 

 by .  Therefore, it follows that    

But now, we can restrict  and  the statement C(n-1).  That means  we have  is 

odd.  Therefore,  is odd.   That implies C(n).   I will repeat this part, so what is happening 

here?   is the  (n-1)-simplex   is its subdivision indices by  .  Since  is a 

simplicial approximation to identity on  it restricts to a simplicial map . 

Moreover this restricted  is  a simplicial approximation to  itself. Therefore,   we can apply 

C(n-1) and conclude that  is odd.  But the above argument  shows that  is actually 

equal to  for the function  restricted to .   

557



(Refer Slide Time: 16:45) 

 
So, Sperner lemma, can applied  now to get many results.  Our aim is to prove the Brouwer’s 

invariance of domain.  But, first we can and shall prove Brouwer’s fixed point theorem for general 

case. We had proved it for n equal to 2. So, let us, let us be done with that. 

(Refer Slide Time: 17:22) 

 
For any integer n greater than equal to 1, these three statements are equivalent. I think I have done 

it for n equal to 2, but the proof is exactly the same  in the general case. So, I will repeat  it here.  

First statement is Brouwer’s fixed point theorem. Every continuous map on the closed unit disc to 

unit disc has a fixed point. So, the second statement is, the boundary  of  is not a retract of 

.  The third statement is,  cannot be contractible. 
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You might have forgotten it maybe, so, we will repeat this proof quickly. So, how (a) implies (b)? 

What we are trying to prove? If not (b)  then we will say not (a).  Suppose  is a retract of .  

If r is a retraction, then we will get a contradiction to (a).  If r is a retraction, retraction means 

what? a continuous map such that on the boundary it is identity map. So,  take  

to be the antipodal map and look at .  If  is in the boundary, then  

 If  is in the interior of , then clearly,  is in the boundary 

and hence cannot be equal to     

Therefore  has no fixed point, contradiction to (a). So, if there is a retraction, that there is a map 

with  no fixed points. 

If you take any point on the inside the boundary, inside, in the interior it has gone already to some 

point in the boundary. Again, under alpha it goes to a boundary point under eta also it goes to 

boundary point. But the original point was in the interior, so those two cannot be equal anyway, 

the chance was only in the boundary, but the boundary points goes,  goes to - .  So, that is all. 

So, there is no fixed point at all. That is the contradiction. 

Now let us prove (b) implies (a).  the proof is exactly the same as that we wrote for n equal to 2. 

So, what we have to do? We make a picture draw the line joining  and , extended towards  

, get the  point ; that will be a retraction. So, that is what we have done.  
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Now let us prove (b) and (c) are equivalent. We have seen that a space  X is a contractible, if and 

only if X is a retract of the cone CX.  This is one of the theorems we have proved.  

The cone over   is  So, what does (b) say? X is the  boundary , and     is the  cone 

CX.  (b) says  X is a retract of its cone, i.,e.,   is a retract of the cone over it,  then X is 

contractible. So, so here  is not contractible, therefore  is not a retract of .  The same 

thing as saying that    is contractible then    is not a retract. Therefore,  (b) gives (c) and   

and conversely. 

Now how we are going to use this to prove Brouwer's fixed point theorem itself. The above 

theorem says only that the three statements are  equivalent. I have not proved anyone of them. We 

do not know whether any one of them is true.  If you prove any one of them, then all the three gets 

proved. 
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So,  finally here, to prove that each of the statement is true, we shall prove (b) that is, there is no 

retraction from  onto . If there is one, ,  take a simplicial approximation to 

it,  .  Apply Sperner lemma. Sperner lemma says that, the number of simplices in  

mapped onto the whole of    is actually odd. But since r is a retraction, the whole of 

, the boundary complex.  Therefore, no n-simplex would have been mapped onto 

. 
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  So, Sperner lemma gives you immediately that there is no retraction, of the entire disk on to the 

boundary. Therefore, Brouwer's fixed point theorem is also proved. 
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Now, we will prove the simpler version of Bruower’s invariance of domain. Many books call this 

homeomorphic Brouwer's invariance of domain. What it says? It says that   cannot 

be homeomorphic to each other.  That is statement of the next corollary.   
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How do we prove that? Suppose there is a homeomorphism, then you know that you can take one-

point compactifications of them,  they will be also homeomorphic to each other. What is the  one 

point compactification of ?  It is . For  it is . Now  and we  have got a 

homeomorphism between them, . In particular,   will be a homotopy 

equivalence. This is the theorem that says that this is not possible.   So that will complete the proof 

of Bruower’s invariance of domain, the next theorem. 

How does  one  proved this?  Without loss of generality, we can assume that n is less than m, by 

interchanging the n and m, if necessary.  Now, we have already proved that if n is less than m , 

then  any map as above is null homotopic. So, this f is null homotopic. By pre- composing with a  

homotopy inverse, ,  you have  which is homotopic to . 

 But  is  homotopic to a constant map. T  is also homotopic to a constant map.  Therefore, 

the identity map of  is null-homotopic.   

 But we have seen earlier that for  any space X, if the identity map  is null homotopic then X 

is contractible. Now, part (c) of the previous lemma tells you that,  since you have proved (a) 

already,  none of the spheres is contractible.  

So, I repeat because of this theorem. What we have proved is, two  spheres of  different  dimensions 

cannot be of the same  homotopic type.  In particular they cannot be homeomorphic. From that it 

follows that the corresponding  euclidean spaces cannot be homeomorphic.  
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So, when this was proved first time,  it was a very great result, a landmark result. How Brouwer 

proved it, more or less through his invention of homology. He had different proofs of this also, by 

the way. It is proved by using  some dimension theory and so on. All these proofs  are much, very, 

very much more complicated.  

So, nowadays, homology theory gives you the standard proof of this one. So, what I got is, I got 

you this one by just using simplicial approximation and Sperner lemma. There is a stronger 

version. I have obtained you this a weaker version. What is the stronger version? That says that, if 

you take an open subset of  non empty open set and  suppose this is homeomorphic to another 

subset of . The homeomophism is only for subset to subset and not necessarily defined on the  

entire of .  Suppose one of them is open in .  Then the other one is also open inside . So, 

that is called actually invariance of domain. Remember, domain was the word used for  open and 

connected subsets, in analysis. So, that will be our next task, proving the full full version  of 

invariance of domain. So, we will take it up next time. Thank you. 
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