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Today we will talk about the point set topological aspects of simplicial complexes. So this is the 

topic for module 31. By definition, all polyhedrons are homeomorphic to the mod of simplicial 

complexes,  the geometric realization of simplicial complexes, right? So they will share all the 

topological properties of that.  

And we have seen that, in the very definition, that the topology on  is finer than the metric 

topology induced on it by its inclusion in  of those functions which take only finitely many non-

zero values. Anything which is finer than a metric topology will have many, many other properties. 

One such thing is that it must be Hausdorff.  

Any space which is finer than a metric space is automatically Hausdorff because the metric space 

is Hausdorff. So the first theorem is obvious here.  is Hausdorff.  
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So the next preposition here is the key for several important properties of  . But this key is 

totally obvious from the definition, namely every  is actually the disjoint union of all its open 

simplexes. Starts with 0 simplexes. By definition it follows that all  0-simplexes are open (as well 

as, closed) simplexes.  Remember a modulus of a simplex consists of functions which are non-

zero at most at the vertices of the simplex, with various properties. Summation should be zero and 

so on, right?  
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And the open simplex consists of those which have precisely not equal to 0 on that set; on the set 

. Everywhere else it is 0. On that set, on all points here, the coordinates is non-zero. That is open 

simplex. The 0 simplex, the modulus of a singleton nothing but the function which takes 1 there 

and 0 everywhere, everywhere else, on every other vector.  

So automatically singleton, modulus of singleton is both, it is an open simplex as well as closed 

simplex. So do not confuse it with open subsets and closed subsets. A closed simplex is a closed 

subset also but open simplex is, need not be open everywhere. They are open inside , the closure 

of ,  closed simplexes, that is all.  

But what I want here is that,   is precisely equal to disjoint union of these open simplexes. Take 

any point  here. It belongs to precisely one of them, namely, , its support, look at the 

support. That is the simplex. Then open simplex therefore contains the point, contains that function 

and nothing else will contain it. Therefore this is a disjoint union of these things. Is that clear? 

Student: Yes Sir, clear. 

Professor: We will use this in a very, very certain, very nice way. This lemma we will use that. 

Take any subset of  such that every simplex  of  has exactly one point in the interior of   

from A;  has at most one point.  See, some of them may not intersect alt all.  If they 

intersect, then the number of  points of intersection will be 1 and it should be the interior point of 

, one of the interior points. Assume this. 

This is a condition on the subset A, not a condition on  or . For each  this should happen.

 can be empty or a  singleton point. And that point must be the interior here. If that happens 

then A is a closed subset of  and it is discrete. I hope you know what is a discrete subspace of 

a topological space. So the proof is very straightforward.  

We use the fact that  is disjoint union of its open simplexes. Suppose this is true for A, the 

assumptions on A,  I have given. Now you take any subset of B, any subset B of A. That will also 

have the same property, right? It will have fewer points. So that will have the same property.  B  

 may even be empty also but it cannot be more than 1 because if A intersection F has 1, so B 

intersection F will also be at most 1. It is the same property.  
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In particular, what happens is, if you take the closure of F, closure of F will have all the smaller 

open simplexes also. Namely take any subset of , proper subset of . All of them will come. That 

is the union. Closure of F itself is disjoint union of open simplexes, namely all these open 

simplexes are subsets of  now including .  Therefore there will be only finitely many of them. 

If this has only finitely many open simplex, each of them contributing at most one point B 

intersection F will be finite subset. Any finite subset of  is a closed set because  is Hausdorff. 

So  is closed subset of  for every   

But then we know that if this is the property of any subset that B itself must be closed  in  . 

Intersection with every mod F is closed in mod F means B itself is closed in . So what we have 

proved is that every subset of, every subset B of A, every subset B of A is a closed set. In particular 

A is closed and it must be discrete. If every subset is closed, every subset is open also. So it is a 

discrete, so discrete topological space as subspace of  . 

And it is closed. The topology induced from  on A is discrete. It is a discrete space. Every point 

is open in particular, alright. Now this lemma was an easy consequence of the easiest observation 

here. Now we will derive some consequence of this lemma 5.3 which is not so obvious at all. 
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Each  is compact. That is obvious because we have seen that it is homeomorphic to a disc, right. 

But conversely each compact subset of  is covered by finitely many open or closed simplexes. 

A closed simplex is a closed set. And open simplex is not an open set. It is not an open cover for 

. So do not make that mistake.  

If we have a compact set  has an open cover then it has a finite subcover. That is not the point here. 

The point here is that these open sets are not at all open in ; only maximal simplexes will have 

open simplexes open inside . Yet only finitely many of them will cover it. This is the point. Let 

us see how. 

Once open simplexes, finitely many of them cover it; the close simplexes will follow because you 

can take the closure also. So there will be finitely many of them. So they will cover it. So I am 

going to prove this, finitely many open simplexes themselves will cover. 

So how do I prove it? Well,  is homeomorphic to a closed disc. That we have seen. So it is 

compact. Now I am going to prove something. Start with any compact set L contained inside . 

Then we can construct a subset A of L such that A intersection with any open simplex  is at most 

a singleton. 

In other words, given   if  is non empty, then  then I pick up one point from this one 

ant put it inside A.  L is given to be compact.  we are going to construct a subset A of L. Look at 

.  If it is non empty, pick up one point from this and  put it inside A. If it is empty do not 
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worry. So what is this set A? A is subset of L. And for ,  A intersection with    is at most 

a single point.  Therefore A has exactly the same property as in this lemma, previous lemma. 

Therefore A is a discrete set. Therefore being a subset of a compact set, a discrete set must be 

finite. What is the outcome? Look at, for each point in A, there is one and only one F such that  

is non empty.  But if you take all the F they will cover the whole of L. Therefore there are only 

finitely many F1, F2, F’s like this corresponding to elements in A which will intersect L.  

So the first part is over. Take closures here. So they will also cover L. That will give you second 

part here.  

 

It is not true that number of closed simplexes which meet a given  closed simplex  is finite in  

general. No.  You can take a vertex. And then there can be infinitely many edges which are incident 

at that vertex. That is allowed.  

Similarly one single edge maybe incident on several triangles, infinitely many triangles. So a 

simplex you have taken in this very statement, mod F is covered by mod F. So why do you need 

so closed simplexes, right? But this part is very important. Every compact set is closed by this one. 

That is the whole thing. But mod F is covered by finitely many open simplexes. 

So I should have stated it maybe separately  these two things. But mod F is covered by mod F 

itself, one single simplex. What is the point? That is not the beauty. Beauty is that  the proof shows 

that every compact set is covered by finitely many closed  closed simplexes like this.  
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The next thing is another important property in topology, that  is actually normal. You can also 

say that it is finer than the metric topology  right, so it must be normal. But that is not correct,  

there is a catch there. Something is normal and you have a finer topology, it may not be normal. 

Alright metric space is for normal, fine. So what? 

 

But what we have taken is a finer  topology. So you have to careful here. You have to prove that 

 is normal. It is not like Hausdorffness. So let us not hand wave here. Let us get a proof of the 
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fact that  is normal. What is normality? Given any two disjoint closed sets,  you must be able 

to separate them by open sets-- disjoint open sets.  

But there are other criterion.  Given any closed subset and a continuous function into  you can 

extend it to the whole of . That will also prove that  is normal. So this is the property given 

by Tietze's extension theorem. If a space has Tietze's extension property then it must be normal, 

and conversely. That is what you must have learnt in point set topology. So I am going to use that. 

So starting with a closed subset A of  and a continuous function  from A to , I want to say 

that there is a continuous function  from  to  which extends . If I prove this, by Tietze's 

extension theorem, it follows that  is normal. There may be different ways of proving this one 

but I find this one to be the simplest. So how to construct   ? 

So again, the recipe we have already declared how to construct continuous functions on ? 

Construct them on each simplex, each closed simplex in such a way that on a smaller simplex 

whatever you have constructed is extended on the larger simplex. If a function is constructed like 

this then as a function it makes sense first of all.  

Continuity follows because restricted to each  it is continuous. This is the recipe we are going 

to follow here. This will be the first time perhaps we have doing it like this. So what I am going to 

do is I will construct a family of functions ,  phi indexed by  on  to  for each ,  is 

simplex, such that if you restrict it to  , this must be the given function . That is the first 

condition. If it does not intersect I do not care. That could be anything.  

Second condition is that if I already constructed it on , for   , then   that I am going 

to construct should be such that when restricted to   , it must be  must be . So this what  is 

called  compatibility. If you are constructed the function on all the vertices then when you are 

extending to edge, when you are defining it on an edge, you should take care that on the endpoints 

it is already the function that you have constructed.  

And once all the edges are done on a triangle when you are defining,  on the boundary of this 

triangle it should be already the function that you have constructed, so if you follow that then you 

are done. So inductively you can do this namely, take , suppose you have already defined it on 
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the boundary which is the union  lower dimensional simplexes, union of lower dimensional 

simplexes. If you can extend it over F you are done, alright.  

This is easily done by induction. That is what I am telling you. Let  be an n-simplex. Since each 

 is normal because it is homeomorphic to a disc, each mod F is normal. By induction the function 

is defined on  which is closed subset. On that closed subset you have a 

function, continuous function. So apply that mod F is normal. You get an extension  on mod F 

by the same Tietze's extension theorem. Put them together, you have the whole function on . 

(Refer Slide Time: 20:29) 

 

Here are few remarks and exercises. I will go through a couple of them. Exercises are after all, 

exercises. One of the things that we claim that  as a subset of the product space here  is a 

closed subset if V is finite. You are asked to verify this. We have defined; actually if you just read 

carefully; when V is finite we have defined the topology in a particular way. Use that to see that it 

is closed subset. 

For any simplicial complex  this is... This is a typo. I have corrected it but today I have taken 

wrong slide here. Instead of  it should be .  Triangulate   with exactly twice 

as many vertices as in K such that   and    are subcomplexes. Remember   this 

denotes the  prism over . So I do not want to use that notation here.  is a simplicial complex 

whereas  is a topological space, alright.  
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So I want to give you another triangulation of  in which no extra vertices are introduced. 

Only from K cross 0 all the vertices of K will be there. A copy of that one K cross 1 again, same 

thing should be there. For example, if K is a just one edge then K cross I is a square. So then you 

are allowed to take only 4 vertices, no more vertices and triangulate it.  

And we have shown that there are two ways of triangulating it. Either join this diagonal or the 

other diagonal. There are two diagonals there. You can take any one of the diagonals as another 

extra edge and you are done. Same thing you should try to do for all simplexes. So that is the 

exercise here. But there is no canonicalness here now.  

And hint is; choose an order on the vertices, some, some linear order.  Order means that. That is 

the hint, like when you have one edge you have E1, E2 or E naught, E1 whatever. So you have to 

choose an order and then use that order to write down. That will help. 

Next, I have given you a triangulation of . Now you are asked to give a triangulation of . Do 

that. 

Give a triangulation of the projective space .  So hint is use S-triangulation, but this is not going 

to help you much. But it is just a hint that is all. This is not going to help. Use S-triangulation of 

the spheres and induction. Induction will be correct. But this is not quite, quite the stuff here. S-

triangulation will not give you triangulation of . 

(Refer Slide Time: 24:30) 
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Here is another concept which I am not very much interested in pursuing. So I have put it in the 

exercise. Namely, take  a simplicial complex . Then the three conditions here are all equivalent. 

This is an extra condition on  , okay. This is not a part of every simplicial complex. The first 

condition says that each vertex of  belongs to only finitely many  edges. Only finitely many 

edges will occur there at each vertex.  

Second condition says that each vertex of  belongs to a finite number of simplexes. The third 

one is a topological condition--  is locally compact. So you see-- this is purely  combinatorial 
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condition, first two of them. The third one is topological. You are supposed to prove these three 

things are equivalent.  

Such a ,  if it satisfies any one of them, will be called  locally finite.  Locally finite means all that 

you have to do is look at every vertex. There must be only finitely many edges emanating from 

them. Once  locally finite is done automatically  is locally compact. Or conversely if you have 

started with a locally compact space X, then if you want to triangulate it you have to choose a K 

which is locally finite. There is no other choice. Try to prove that. 

The next one is something about when can a simplicial complex can be embedded inside . So 

gives you some condition. Let  from  to  be a topological embedding. Topological 

embedding means what? It is continuous function one-one and onto the image it is a 

homeomorphism. If you take the image as subspace of , then there will be inverse function 

which is continuous.  

That is the meaning of topological embedding. Show that K has to be locally finite. Second is K 

must be countable. The number of vertices in K must be countable. That is the meaning of 

countability. Automatically number of simplexes will be also countable. The vertex set is 

countable is the meaning of this. 

The third thing is dimension of K must be less than or equal to n. So this is harder to prove right 

now for you. This is harder. So I have, I have some idea why I have given at this stage. Later on 

this will become easier after we do a little more theory. Dimension of K cannot be bigger than n if 

it is embedded inside  alright. 

So I will continue here. Here it was arbitrary topological embedding. In this exercise you want    

to be linear on each simplex.   has a vector space structure. A subset K namely mod F that has 

a linear structure, affine linear structure. So a function f from mod K to    restricted to each mod 

F should be  affine linear then we say    itself is linear. This is just the abuse of notation, abuse of 

language. 

So here I have stated it as a theorem but  because of lack of time, I am not going to treat this one. 

So following a number of exercise, you can complete the proof of this theorem, namely every 
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locally finite, countable simplicial complex of dimension k, so all these, all these conditions were 

there in the earlier exercise if there is an embedding.  

Now I am reversing. In the converse,  I have put dimension of K to be very small, namely it is less 

than half you see. Then we can have a linear embedding  from  to . What is the idea? 

Idea behind this is  in these steps, alright. So these are steps a, b, c, d. So let me stop here. You can 

read them by yourself. Thank you. 
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