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So, last time we defined what is the meaning of a polyhedron or simplicial polyhedron, namely a 

topological space it can be triangulated. And we saw that the disk is triangulable in such a way 

that the restricted triangulation to the boundary will give you a triangulation of the boundary of 

the, boundary sphere. Let us, let us take some more examples now. 

So recall that join of two complexes, join of two topological spaces  were defined as the 

quotient of  in which, at the 1-end, i.e., when t=1,  all the y1 and y2 are identified for 

each x and at the 0-end, namely when the t equal to 0, all the x1 and x2 are identified with y 

keeping fixed. That is the definition of the join. So what we want to show that is, if  and  are 

triangulable then its join is triangulable. This is what we are trying to prove now.  

474



(Refer Slide Time: 01:46) 

 

So this is a preparatory lemma here. If  and  are two simplexes in some simplicial complex, 

then I want to say that  is   is triangulated by .  Remember that if  and  are  

simplexes, (that means they are finite sets and all their subsets are taken as faces) then  is a  

simplicial complex on the disjoint union  and .  

In this simplicial complex all subsets are there.  All subsets of  will be there. So they can 

be written as a subset of  union with subset of . So there are two different ways of  describing  

---just take disjoint union of the vertex sets and then take the full subcomplex over it. Now  

you take the modulus of that. That is linearly isomorphic to , first take  and   and 

then take the topological join. So this is the statement. 

Not only that, there is a very natural isomorphism, namely, this map is first of all defined on 

; , the standard construction that we have been following. 

So given   which are in  respectively, the RHS in the above formula belongs to  

because you can think of  as a function on   taking value 0 on all points of . 

Similarly,  can be thought of as function from  disjoint union G taking value 0 on . So these 

two things can be thought of as functions here, and they will be themselves points of  . 

Then you can take the convex combinations inside this big simplex  which has its own  affine 

structure. 
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So that is the meaning of the right hand side here. Therefore, the above assignment defines a 

function  which is by the very formula is continuous, because it is 

affine an combination.  Moreover it respects the equivalence relation on the domain. So what is 

the equivalence relation here? When t is 0,  all alphas are identified irrespective of what beta is for 

each beta, So this will give  beta. When t is 1 all the beta are identified. So this again, respects that 

relation. So this induces  a function  on  the quotient of this space . Whatever is identified 

here goes to the same corresponding point that is why this is a map here.  

Obviously by the definition of quotient topology this will be continuous. So the point that we have 

to verify is that this is a bijection. The moment it is a bijection, this is a compact space, this is the 

Hausdorff space, it will automatically a homeomorphism. It is a linear isomorphism, linear in the 

sense, affine linear, not vector space linear. 
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So, what I will do now, I leave it to you to see that this  is a bijection. This is simpler than what 

we did the last time, namely .  So you can just verify it. Take  take this formula. 

Suppose  Then show that they are equivalent, that the two points are 

equivalent. That will give me injection here. Injectivity here is not true. Injectivity is here.  
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And surjectivity is obvious because everything can be written as one point here and one point here, 

t to 1 minus t. This is  easier here than in the case of small delta and beta and so on. So this is an 

exercise for you.  

Finally, there is the word `canonical’  here, canonical affine linear isomorphism. What is the 

meaning of that? I want to explain that one. This is an explanation only. It requires no proof at all. 

Namely, suppose if you have . Then we have the following commutative 

diagram. , same  going to . This will be a subset of that. So modulus of this 

will be a subspace of this.  Each of them is subspace, so  will be containing . So these 

are inclusion maps.  

Again if we add this here, this diagram is commutative. So the functions here  are same  as here 

because they are given by the same formula, t times alpha plus 1 minus t times beta, whether you 

are here or here, whether you are here or here. That is the meaning of this. But this is an important 

thing, this property, alright. So that is why I have mentioned it. 
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So now we can complete the task of showing that  is homeomorphic to . As 

such you do not know whether this is a polyhedron. Once you prove that it follows that this is a 

polyhedron. That is the whole idea. So once again recall that the vertex set of  is the 

disjoint union of the vertex sets   and .  
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But what are simplexes? A simplex of  is a disjoint union of a simplex in  and a simplex 

in . Therefore these    are subspaces of  in an obvious way, because we have 

 as subcomplexes.  So moreover, if  and  , then   

makes sense in  itself. You do not have to go outside. F1 disjoint in F2 has an affine 

structure.  

That is contained inside .  Therefore, the same formula that we have done will work here 

also locally, for each F1 and each F2 . And if you, from smaller one to larger when you pass, the 

formula on the smaller one does not change. They are compatible. That is what we have noticed 

here in this one under canonical property.   

Therefore, you can put them all together. These ’s together which are defined for each F1 and F2. 

That will define a single homeomorphism , because corresponding 

images will be also distinct. If F1 and F2, G1 and G2 are different then their interiors will be 

different. Boundaries will agree with the smaller simplexes. Therefore this itself is a 

homeomorphism. 
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In particular you specialize  to a single point which is nothing but the cone now. If you take two 

points it will be a suspension. So we get both suspension and cone of a polyhedron will be 

polyhedrons. Suppose X has already some structure, namely of a polyhedron then the suspension 
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of that will also have polyhedron, namely X star S naught. Mod of x star S naught will be S X. 

That is the... 

So we can define the suspension of X also as a, in the case of polyhedron. In particular we have 

also observed that if you repeat, repeatedly take the join of  with itself, n plus 1 copies, then it is 

a sphere. So this will give you another simplicial structure to  than what we have defined in the 

previous session. This point I want to repeat it. It is, once I have said it, it is over. But I want to 

repeat it. This is called S-triangulation of a sphere. 
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This special case I am going to explain here. So this is an interesting way to triangulate the sphere. 

We have just seen that the topological cone over  is homeomorphic to the disc  . So it 

follows that if  is a triangulation of X, then  we get an extended triangulation  

of the cone CX.  This capital F is extension of map, not a simplex. 

Since the suspension can be thought of as a double cone, it follows that we get a triangulation

  of the suspension .  This is a more general statement I am making. But here already 

we have observed that  (k-times) will give you the sphere . So I will come back 

to that one. Now recall that   can be thought of as n-fold suspension of , in particular beginning 

with obvious triangulation of .   

What is it? Just the 2-point complex,  that is all, It is zero-dimensional simplicial complex. By 

taking successive suspension we get a triangulation of .  So we shall refer to this  triangulation 

of  by S-triangulation, namely by taking suspension. It is worthwhile to note that antipodal map, 

in this case, namely antipodal map means what, . This is a simplicial isomorphism of 

S-triangulation.  

If you take the standard boundary of , the  antipodal map has no role to play there. It is not 

(( simplicial. S-triangulation has this property that is very useful. 
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I will give you some more examples here. Now consider the one-dimensional simplicial complex 

K whose vertex set is set of integers, 1, 2, 3 and so on, 0, minus 1, minus 2 and so on. And the 

edges, and the one simplexes are precisely consecutive integer pairs,  

like that, consecutive integers, nothing else. So this is simplicial complex. What is its geometric 

realization?  

It will be the whole of .  Each simplex n to n plus 1 filling up the gap between the interval n to n 

plus 1. So that is it. So this way we get triangulation of . The point here is that this is the first 

triangulation that we have taken to be infinite, a genuine example. Otherwise we had only disks 

and deltas and so on. The triangulation here, the simplicial complex K could not have been finite 

because if this were finite then it will be compact whereas  is non-compact. 
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Now I come to a serious problem, namely products. We have already dealt with some way, product 

with . But you have to be careful. There it was for the join. It was not actually the Cartesian 

product of a space with some other space. The problem is what kind of polyhedron will, what kind 

of simplicial complex will give you the product structure? 

Suppose X and Y already have polyhedral structures. Then is there a way to give their product 

 a polyhedron structure, such that it has something to do with the original, original 

complexes on X and Y? So this problem is much deeper and quite difficult. In fact, in general it is 

not possible. So what I will do is I will specialize to the case when one of the factor is just the 

interval [0, 1].  Even here we will have problems. 

For example, take  What is the best way to triangulate this one? There are 2 

vertices, 2 vertices here. So you are tempted to take 4 vertices. Then for each simplex here, 0- 

simplex cross 1-simplex, 1-simplex cross 0-simplex and so on. If you do that, what happens? the 

number of vertices taken 4 is lucky. That is right. But number of 1-simplexes are too less or too 

many. So this is depicted here in this, in this picture. 

So V naught V1 is delta 1. V1 V2 is also delta 1. So this is a product. This I cross I, the product 

space is I cross I. What is the simplicial structure here? I can take  as 

vertices. But what should be the 1-simplexes? Naturally the subspace, this line, this line, this line, 

this line must be there.  
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But then if you just leave it there, the interior is not a simplex. So you have to either cut it this way 

or cut it this way, right? Both of them are possible. The fact that there are two different choices 

creates the problem, which one to take? The moment there is a choice that is going to create a 

problem. 
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So you want to solve this problem in a canonical way by, maybe by introducing a little more 

number of vertices and more edges rather than just sticking to this product things like this. So this 

is what I want to do. So this is point cross . Point cross  itself is a simplicial complex, because  

is a simplicial complex.  is just a 1-simplex.  

But I am not going to leave it like that. I am going to divide it into two parts by taking the barycentre 

of this one as an extra vertex and then declaring these two portions as 1-simplexes. The original 

1-simplex actually disappears. It is being cut into two. That is the meaning of it. Alright.  

Come to the second space, namely, when it is . So this is  cross . It  is a rectangle or a 

square, whatever you want to think of. Point cross I is this one. So disappears here. Other point 

cross I also disappears here.  appears as it is at the zeroth level as well as at the one-th level. 

So now you have the big square here, empty square. What I am going to do is this. I take the 

barycenter of this one shifted at the half level. That is going to be an extra vertex.  
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As soon as you have an extra vertex, join it to all the vertices in the boundary. Join it,  if this is 

simplex, declare this as simplex. If this is simplex declare this as simplex, namely this is the cone 

construction. Do the same thing for  also. This is, sorry this is  . There are 2-simplexes. 

Once you have fixed what the boundary is which is   1-dimensional part, 1 cross I, here the body 

is fixed.  

The bottom is kept as it is. The whole boundary of delta 2 cross I has been triangulated. Take the 

barycenter of this simplex. Shift it at half-level.  And then take the cone over the boundary. So 

having told this one actually the construction of what I call as the prism construction is over.  Why 

I am calling as prism? Look at this and this delta cross I. This is the prism. This is called the prism 

construction is over.  
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Let me do it systematically once again so that you will understand what is going on. For each 

simplicial complex , we shall construct a simplicial complex denoted by . This is a 

notation. This is going to be a simplicial complex which I am going to describe now.   is a 

simplicial complex.    is not a topological space, it is going to be a simplicial complex, so 

that if you take its geometric realization   that is a topological space, alright. This   is 

just a symbol here. I am going to call it the prism only after I construct the simplicial complex on 

this one, which I am going to describe. It is called prism over K, like cone over K, how we have 

constructed, and the suspension over K, this is the prism over K with the following properties. 
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(a) , the geometric realization is .  This is the first property. (b) Then there are 

simplicial maps,  and  from , which is simplicial complex to this simplicial complex. So 

these  are simplicial maps, which are isomorphisms onto subcomplexes. That means they are one-

one mappings taking simplexes to simplexes in a one-one way.  Their images will be denoted by 

 and , respectively.     

 This are again notations. Just like  is a notation,  and  are also notations.  Of 

course, they are subcomplexes of . This is the second  property I want. I want (a), and I want 

this property (b) also. I want something more, namely, the underlying topological space of  

is the subspace ,  and similarly . This is the 

third property (c). 

Finally I want something more.  If we take a subcomplex ,  then I must have , the  

prism over  as a subcomplex of , whatever I want to define. So far, neither I have defined 

 nor I have defined . But they must have these properties. So I want a prism to have all 

these properties. Now I have put so many conditions which looks like too many restrictions ; we 

have  made your life more difficult. 
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In reality, these restrictions will actually guide you how to construct . And that is done by 

induction. So let us have notation:  will denote the barycentre of any simplex . Let us put 

,  short notation for the ordered pair ,  belonging to . So I am placing this 

barycentre at the half-level.  

Now suppose  is single vertex, a 0-simplex. Then I am looking at simplicial complex with 

vertex at precisely equal to this one and 1 simplexes are precisely equal to this one. And this is the 

simplicial complex. There are no other 2-simplex, 3-simplex and so on. This is going to be my 

 where  is a singleton, a 0-simplex. So what are the vertices?  and 

.  That is precisely this picture, the first picture here. And 

  will be one of the  1-simplexes;  will be another 1-simplex. So 

that is what I have listed here.  And eta 0 of ; and  Now this completes 

the construction of ,  when  is a singleton. Since there are no subcomplexes, subcomplex 

is empty, all those conditions (a), (b), (c), (d)’s whatever I have demanded, they are all satisfied.  

So the construction for singleton is over. As soon as you have constructed it for singletons you 

take the union of all these things, it will be constructed for all zero-dimensional simplexes. A zero-

dimensional simplex is nothing but disjoint union of singletons. The construction is over for all 

zero-dimensional simplexes because I am just taking the union. Singleton cross I, disjoint union 

because singletons are disjoint over K. So the inductive step is over for n equal to 0.  
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Now assume that we have done it for some n minus 1, all the way up to n minus 1. Then we want 

to do it for n. What is the meaning of that? Take a simplicial complex K and take a n-simplex , 

an n-dimensional simplex in it. On the boundary of this simplex there is already the prism  

structure:  by induction.   

On the bottom,  , I am not going to disturb it. I am keeping it as . Similarly,    

also, I am not going to disturb--I am keeping it as .  Taking the union,  I complete the picture 

of boundary of , which  is already given a simplicial structure now. Next,  you take the cone 
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over this, with the cone point, namely apex point precisely at .  F hat is what? The barycentre of 

F comma half. That is what I am going to do. 

I repeat.  By induction, the prism  is defined  triangulating   

  This is by induction. Now you should know that   is homeomorphic 

to ,  so  homeomorphic to  which is a cone over its boundary . All this I am using  

here.  

So we simply take  as it is and  as it is (they are copies of ) and then the  union with 

, so this entire thing from here to here describes the boundary of . That has 

been given a simplicial structure. Take the cone with apex at   extend this structure to  So, 

automatically  and  get extended. That is all.  

Once you have done it for each n-simplex F,  one by one,  them, take the union.  simplex we are 

already constructed. Take the union over all the n simplexes. That will complete the construction 

for n-dimensional skeleton .  So inductively, extending the prism   to  

has been described. 

Therefore now the construction is over for all  ,  where  denotes the nth-skeleton of 

 Take the union of all these over n. Because of the property (d) they are compatible. Subspace 

which is already triangulated  gets extended to the triangulation of  the larger space,  So they will 

be compatible. So take the union. That is the definition of  as a simplicial complex which 

will have its modulus homeomorphic to . Okay this is prism construction, alright.  
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Let me give you another simple thing is a triangulation of a torus. By the definition you must be 

knowing that the Torus is defined as .  But S1 is defined by the interval and identifying 

end points. Therefore the Torus can be defined as quotient of  by identifying opposite sides; 

pairs of opposite sides will be identified with the correct orientation. So this you must be knowing 

already. So in order to give a triangulation on the torus what we do is we choose a triangulation 

on   in such a way that when you quotient out the triangles etc do not collide. 

In other words, two vertices which are joined will go to two distinct vertices correspondingly 

paired. Three vertices which form triangle, they will go to a triangle, no two vertices of a triangle  
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will be identified and so on. Not only that another set of edges will not come on the same side of 

a vertex. This is what  you have to be careful about, all right? 

So all this thing can be done. So this is a good example to know when you to deal with  quotients, 

you have to be careful.  We cut down  into three edges, and then identity the end points 0 and 1,  

you get a triangle, which triangulates   That is the  `minimum’ way of triangulating a circle-- to  

take 3 points and 3 edges right? You cannot do with less than that. 

So do that. Label the vertices on  line seqment at the bottom  1, 2, 3. This is 1 only because this is 

going to be identified with this 1. Continue like this along the boundary, now take some more 

vertices, 4, 5, but then again this will be identified with this 1. So this is 1. 3 will be identified with 

this 3. 2 will be identified with this 2. 1 will be identified by this 1, this entire line being identified 

with this entire line; 1, 2, 3, 1; 1,2,3,1. Similarly 1, 4, 5, 1 identified 1, 4, 5, 1. These are not new. 

But inside the square,  I am taking 6, 7, 8, 9 here. And then joining them systematically like this. 

Of course this  is not the unique way nor canonical.  

There are many ways. Now you see each triangle is uniquely defined when you go to the quotient. 

This gives you the triangulation of a torus. This is not an economic way of doing it, by the way. 

Given any surface you can give it a triangulation. That is little more harder to prove. It is a big 

theorem. Then there are problems like this. What is the minimal number of vertices needed? What 

is the minimum number of edges needed? And so on. 

This is a big industry since several years,  almost 30-40 years now. Lot of people are working. One 

famous mathematician in India has worked all  his life on that, namely professor Basudeb Datta 

and Sarkaria in Punjab, Basudeb Datta at IISc, and some of his students and so on. The torus itself 

can be triangulated by using just 7-vertices. Try to do that. Let us stop here. 
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