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So, in the last module we discussed what is the meaning of homotopy and the homotopy version 

of the lifting problem. Lifting data implies the lifting problem means the map has lifting 

property. If the map has lifting property with every space, such a map is called a Hurewicz 

fibration. This much, we have seen. 

Similar and but dual to this  is the question number 2, which we want to put in homotopy 

theory- the homotopy theoretic version of the same problem question number 2, an extension 

problem. Remember in the extension problem, very closely associated was the quotient 

problem.  Factorization problem which was very easy set-theoretically. So, we are taking only 

the extension problem here.   
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So, start with a map from A to X. So, this is the map which we are concentrating upon. Now, 

suppose we have the following data. There is a homotopy from A cross  to Y and a map from 

X to Y, such that this   composite g or g composite  whatever you want to say is the starting 

point of this function  F, that is,  equal to F of a, 0 for all a in A. Such a data is called homotopy 

extension data.  

What does it mean is that think of  A as a subspace of X. On the space, on the subspace there 

is the homotopy of a function which is defined already on X. You take the restriction that is g 

composite  the starting point of the homotopy F.  This is the data. Now, what is the conclusion? 

We say  has homotopy extension property with respect to Y, if for each such data, there exists 

a homotopy H on the whole of X cross   to Y such that when you restrict it to A cross    it is 

the homotopy that has been already given and the homotopy is not of arbitrary map, but  of the 

given function g equal to H of x, 0. So, there is a homotopy of the extended map which extends 

the original homotopy. So, that is the homotopy extension property. Once again, I will denote, 

I will represent it by schematically so that you will remember  what is the meaning of this one.  
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Before that, I have a definition here. If this happens for every homotopy  extension data, then 

 will be called a cofibration. There, we called  it as a fibration, P from A to B. Here we have 

A to X, we are calling it as cofibration indicating that this property is somewhat dual to the 

property  of  a fibration. 
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Let us look at the figure here. So, A cross 0 to X cross 0, you have the function.  
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Function is from A to X. A cross 0 is copy of A and  X cross 0 is a  copy of X. So,  cross 0 

we take here. On X cross 0 you have another function g. So, this part is just a function A to X 

and a function X to Y. On this part you have a homotopy of this function; the restricted function 

, and g composite eta on A cross  . That is a homotopy.  

So, this triangle is the given data. This is always given.  is there, so  cross Id from A cross   

to X cross   and this X cross 0 is contained in X cross  . This part is nothing strange-- what is 

given is this triangle. This is always there. This triangle is given. Now, the conclusion of this 

one is that there is a map here from X cross   to Y, the dotted arrow. So, this map,  when you 

compose it to eta cross I, it is F. So, you can think of this as the inclusion, then this will be the 

restriction of H, which, on X cross 0, the starting point is the given g.   

So, whenever you have this diagram there must be a map here which fits the diagram like this, 

then it is called homotopy extension property. So, if   has homotopy extension property for 

every data whatever Y is, whatever g is, whatever F is, then it is called a cofibration.  

Once again you will say this is too much to expect. No, the beauty of these things are, they are 

almost always satisfied or what you will say that whatever interesting spaces come, they will 

have this property. So, that is why, both these properties, fibrations as well as cofibrations are 

a part and parcel of algebraic topology. Right in the beginning you should grasp  what is 

happening. Having set up these two problems in the homotopy set-up, we should now study 

the homotopy a little deeper. So, let us do that one now.  

(Refer Slide Time: 07:26) 

 

47



What are called as homotopy types? We had already homotopy classes of functions, maps. 

Now, we want to do them on spaces. Start with two topological spaces. You know what is the 

meaning of, saying that they are homoeomorphic. There must be a homeomorphism  f from X 

to Y. Namely there must be g from Y to X which is inverse of f and  is continuous. f is 

continuous; g is continuous. That is a homeomorphism. So, we want to take a weaker 

equivalence here namely homotopy equivalence. What is that? 

So, a map is called a homotopy equivalence if there is g from Y to X such that instead of g 

composite f being identity, it is homotopic to identity. Similarly, the other way composition:  

f composition g must be homotopic to identity of Y. So, instead of equality, we are replacing 

by homotopy. Such a thing is called homotopy inverse, g will be homotopy inverse of  f. 

The point is that  there may be many g which satisfy this property, yet the homotopy class of g 

is  only one, if at all it exists. There may not be any. Given any function, there may not be any 

inverses. But if the inverse exists, the homotopy class of that is unique. So, you can call that 

class as the inverse of the class f, homotopy inverse.  

Whenever there exists such an f from X to Y, which is homotopic equivalence, we call X is 

homotopic to Y. Like the function f is homotopic to g is now the space X is homotopic to Y or 

X and Y are homotopy equivalent or they have the same homotopy type. So, all these terms  

are used. 
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Again, using Lemma 1.1, remember that about compositions of homotopy.  
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You can go on to verify that  if  X is homotopic to Y and Y is homotopic to Z, then X will be 

homotopic to Z. Every space is homotopic to itself because identity map is a homotopy 

equivalent, inverse of itself.  

If f says X is homotopic to Y, its inverse will give you Y is homotopic to X and so on. So, 

homotopy equivalence is an equivalence relation, therefore we can take equivalence classes, 

each class is a homotopy type. Once you have that, suppose X and Y are homotopy equivalent, 

then for every space A, the set Y, A  and the set X, A will be in bijection.  

So, this is also a consequence of Lemma 1.1. Keep using the fact that  compositions are 

associative.  Similarly, all functions from B to X, are in one-one correspondence with all 

functions from B to Y when you take homotopy classes. The functions themselves may not be 

in one-one correspondence. When you take homotopy classes, there is a one-one 

correspondence.  

How is it given? Take a  homotopy equivalence f from X to Y. Compose with, suppose you 

have a map from Y to A, compose it  with f, you get a map from X to A. To go back you 

compose it with g. You will go back because g composite f is identity. That is about right. So, 

these things are all straight forward following  our remark after the lemma, Lemma 2.1  
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Now we make a special definition here. Anything which is homotopy type of a single point. 

The single point does not have much properties, topological properties. So, we want to single-

it-out. So, such a thing is called a contractible space. Up to homotopy type, there is no 

difference between any contractible space and a single point. Because they are the same 
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homotopy type. So, all the homotopy theoretic properties will be the same. So, such a thing   is 

a contractible space.  

A map f from X to Y which is homotopic to a constant map, (you should also do for maps also,) 

such a thing is called null homotopy. A constant map will not have much properties. If you 

compose with a constant map, that will also become constant map, whichever way you 

compose, post-compose or pre-compose. Once one of them is a constant map, the composition 

is a constant map.  

So, that kind of properties first, the trivial properties have to be first understood carefully. So, 

there are some easy way of identifying what is a contractible space. Let us go through that one.  

(Refer Slide Time: 13:48) 

 

This is the theorem. It is the first theorem of the course. Following conditions on a space are 

all equivalent. The first condition is X is homotopy equivalent to a singleton space, which,  we 

have named it as X is contractible. That is the first one. The second: the identity map of X to 

X, it is null homotopic. The third one, for every space Y , every map  h from X to Y,  is null 

homotopic. All functions taking values in X, they are null homotopic. Every space and every 

map  h from X to Z is also null homotopic. Every function which its domain  is X is a null 

homotopic. So, both domain and co-domain,  both as a domain and as a co-domain, X is 

behaving very nicely. That is precisely what I told you. If you pre-compose or post-composed 

a function, it will be constant map and that is reflected here on the spaces. 

Whether you start from X or you end in X, if X is contractible, such maps are all null 

homotopic. So, these are the characteristic of point space and up to homotopy they are the 
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characteristic of contractible space. So, that is the gist of this theorem. So, this being a 

mathematics lecture, we should examine these things carefully and study the proofs also. Proofs 

are very easy. Let us go through them.  
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So, let us first prove 1 implies 2. What is the meaning of that? I assume that X is homotopy 

type of a single point, then I want to show that identity map of X is homotopic to a constant 

map. That it is homotopy type of a single point means, I am taking Y as a single point space, f 

is a map from X to Y and g is a map from Y to X. What is Y? Y is a single point. They are 

homotopy inverses of each other. What does it mean? g composite f is homotopic to identity 

and g composite f is what? See, first you start with g single point, sorry,  first you start with f 

from X to a single point. Then take g to X. Where does it go? Single point only,--- g composite 

f is homotopic to identity by definition but g composite f is a constant map. So, identity is 

homotopic to constant map. So, that is the conclusion 2. Okay? So, 1 implies 2 follows. Now, 

let us prove 2 implies 1, the reverse. Reversing is also very easy here.  
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Given that the identity is homotopic to constant map. Let us call this constant map, c from X 

to {c}. Let us name it, as it is a map from X to X, because it is homotopic to identity. Let us 

call it as c from X to {c} The image of see is a single point. So, let us call that as Y. Then we 

can view c as this function as a map from X to single point, because image is single point of 

that. This is a subspace of Y, subspace of X. But I will call it as Y. Now, let g belong this one, 

be the inclusion map. Take inclusion map. This is this is subspace of X. Then what happens? 

If you compose with g, c compose g, g is a constant map, c is a constant map that will be the 

identity of the constant map. Identity of the single point. Start from single point, it will be come 

back to single point. Moreover, we are given that g composite c, the other way around, is 

homotopic to identity. But g composite c is c. Thus, we have what? c is homotopic equivalence 

from X to single point. So, which means X is contractible.   

So, we have got a map X to c single point that itself is a homotopy equivalence is what we have 

proved. So, X is contractible. So, 1 implies 2, 2 implies 1 is okay. The 3 and 4 as I have told 

you already, they are built-in automatically. There is no problem. You go to single point and 

then keep on composing.  
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2 and 3 are an equivalence of 2, 3 or 2, 4. They are very straightforward. Let us have some 

examples now.  
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Euclidean spaces , they are all contractible. In fact, they are all vector spaces. So, 

what happens? You can join lines. The joining the lines is joining any two points by straight 

lines. That is the way to get homotopies.  More generally, inside a vector space you can take a 

convex subset.  

What is the convex subspace? Given any two points x and y inside A, the line segment between 

X and Y. So, x and y are vectors. So, t times x plus 1 minus t times y will give you the line 
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segment. That line segment will be entirely inside A. Then you can take that as a homotopy. 

That is the whole idea.  

So, all convex subsets are contractible. In fact, we can generalize it to what are called as star-

shaped subsets. Namely take a subset S it is called star-shaped, if there is one point  such that 

every element in  S can be join to this  inside S. It is the same thing as saying that the line 

segment [ ,s] is contained in S. In this case  is called the apex of S. This is definition for 

star-shaped sets.  

Then all that I do is I have define an homotopy S cross   to S. In the beginning, in the starting 

it is identity map. At the end it is the single point s naught, the constant function  . So, I have 

  here and the identity here, s goes to s naught is the first one. s goes to identity of s itself is 

a second map. I just join them: .  When t is 0, it is s. Identity. s goes to s. When 

t is 1,  no matter what s is, it is  , the single point.  

So, obviously this is a continuous function. This is just a linear combination of you know scalar 

multiples and adding subtracting and so on inside a vector space. So, all these things that I am 

talking in  . You can have  , or   or any vector space. This will be true. So, this will 

give you homotopy of the identity map with the constant map. If identity map is homotopic 

constant map, our theorem 1.1 will tell you that  the space is contractible.  
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So, we have a picture of what is the star shaped set here. We see these 3 lines meeting at the 

point. That the point is s naught. To take any point inside this figure, you can join it to that 
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point  s naught by a line. A line segment completely inside of the picture. So, you can take a 

point here. This line segment is up till here.  

To take a point here for example, because the point itself is not there. So, there is no question. 

The two points must be there.  Any other point of the segment s t must be inside this one. So, 

that is called star-shaped set. This is a stat-shaped set inside  
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Let us have one very important example. This will give you  a sequence of spaces, pairs of 

spaces. They are not homoeomorphic to each other, but they are homotopic to each other. This 

time I am not giving you things which are homotopic to constant map, constant homotopic to 

a single point. They are not contractible but the two spaces are of same homotopy type. So, 

what are they? 

For each n greater or equal to 0, you take the unit sphere, .  For example, when n is 

0,  What is this? This is  And this is .    is what? Whatever unit vectors inside  plus 1 

and minus 1.  In , what is a unit sphere?  is  the  unit circle; the set of all unit vectors inside 

. So, what we are doing is to throw away the 0 from ;  is inside, included inside. This 

is the subspace of that. Unit vectors are never 0. So, this is a subspace. So, this  is the inclusion 

map.  

We are going to show that this  itself is a homotopy equivalence, with 

its homotopy inverse  which is very nicely given, namely, take any vector divide by its 

norm. So, that is the  map . This  is homotopy inverse of the inclusion map.  

One way is clear namely you take a unit vector. Think of this as a vector here, non-zero vector 

here. If you divide by the normal, you will get the same x, same vector because norm is already 

55



1. So, that means mu composite eta is actually identity. What you have to show is eta composite 

mu is homotopic to the identity of .  This is what you have to show. So, that is the 

homotopy inverse. 
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Whenever you can actually write the homotopy it is nothing but joining the two points. So, this 

is identity x. This is x by norm x. I am joining them, 1 minus t times x plus t times x by norm 

x. The point here is that the right-hand side will never be 0. Therefore, this entire thing is taking 

place inside Rn plus 1 minus 0. Why? Can you tell me why? 

Because take any non-zero vector, to start with, x is non-zero vector. Then x by norm x is also 

a vector in the same direction. They are on the same ray emanating from 0, open 0. 0 is not 

there, open ray emanating from 0 and paaing through x.  So, when you join these the whole 

line segment it, will be away from 0. So, this is the homotopy inverse of the inclusion. This 

example you have to understand very clearly, because there will be modifications of this one. 

This will keep coming again and again.   
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A homeomorphism is definitely a homotopy equivalence, because f composite g is actually 

equal to identity, g composite f equals to  identity of the corresponding spaces. So, if you know 

that  X and Y are not same homotopy type, then they cannot be homoeomorphic. So, this is one 

of the effective ways, how algebraic topology, how homotopy theory is employed.  

So, how to determine whether two spaces have same homotopy type or not? This is our 

fundamental question. This is answered in various ways by cooking up different algebraic or 

algebraic -homotopy invariants. Just like we did in point set topology, if something is a T1 

space, other is not a T1 space, they cannot be homoeomorphic. If something is T2 and other 

one is not a T2 space, they cannot be homoeomorphic. So, similarly you have to cook up 

various invariants---topological or  homotopy type invariants.   
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Every homotopy invariant is also a topological invariant. There is no problem. But there are 

many topological invariants which are not homotopy invariants. We have already seen one 

here, namely  and .  They have the same homotopy type. They are not 

homoeomorphic. It is very easy to see, how?   is compact and    is not compact. 

Very easy to see. So, they are not homoeomorphic to each other but they are of same homotopy 

type. 
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As an example, I will just discuss a few historical things here. There is the  celebrated, century 

old, 3-dimensional Poincare conjecture, which states that something which `looks like’     up 
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to homotopy type, almost like the three spheres up to homotopy type is actually  

homoeomorphic to  .  That was the Poincare conjecture, in dimension 3. 

You can ask the same question in higher dimension also. You can ask in lower dimension also. 

Take something which is homotopy type of a circle. Will it be actually a circle? Of course, we 

have to be careful here namely what is the meaning of something like. So, that is the concept  

called `manifolds’.  

You take a one-dimensional manifold which is homotopy type of a circle. It is not hard to show 

that it is actually a circle. This can be studied in point set topology also, but you might not have 

studied. So, if time permits, we will try to give you a proof of this one. Same question you can 

ask for  .  

And the answer is again, yes. But that is already a little bit difficult but we will try to answer it 

in the second part of this course. As soon as you come to 3-dimension this was a problem posed 

by Poincare which was answered only very recently namely 18 years back. But, n bigger than 

3, this was already answered by many other people 50, 60, 70 years back.  
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In 2002, G Perelman, a Russian mathematician solved this conjecture using very typical, very 

strange kind of differential geometry namely heat equations and so on. Unexpected somewhat.  

He was awarded Field’s medal in 2006 and a Millennium prize 2010. Both of which he has 

declined. He has not accepted them. This fellow is much more stranger than our Ramanujan. 

He is a weird guy.   
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Somewhat surprisingly, the problem for n greater equal to 5 not 4 was solved by Smale in a 

differential topology case, Stallings in the piecewise linear case there are different versions 

when you go higher dimension, Zeeman in topological case. n equal to 4 two was another big 

problem. So, that was solved by in 1980 by Freedman, and he was awarded Field’s medal for 

it.  

So, this is all I can say about this problem. We cannot even go nearer to this problem in this 

course. We will be quite far away from that. However, next time I will tell you, there are some 

very, very great results which we can prove in this course. So, this I will tell you next time. 

Thank you. 
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