
Introduction to Algebraic Topology (Part-I) 

Professor Anant R. Shastri 

Department of Mathematics 

Indian Institute of Technology, Bombay 

Lecture 29 

Simplicial maps 

(Refer Slide Time: 00:15) 

 

Having introduced abstract simplicial complexes and simplicial maps between them, we 

assigned a geometric realization, a topology corresponding to a simplicial complex. The next 

task is to convert the simplicial maps between two simplicial complexes into corresponding 

continuous functions from the geometric realization. So, today's topic is simplicial maps. 

Start with two simplicial complexes   with  as vertex sets. A simplicial map  

from  to  is nothing but a vertex function   which takes the simplices of  

and simplices of . So, once you have such a thing you want to define a  from  to , 

the geometric realizations of  and , so you can call this  also as the geometric realization 

of ;  it will be a continuous function. That is the aim.  

But how do we take the `canonical’ definition?  Namely, if  maps several of the vertices to 

the same vertex then at that vertex you take the sum of all the values of alpha which are mapped 

onto that vertex. Namely, we have to define  (   is a function, remember, on the vertex 

set , so,  has be a function on the vertex set )  So, let  be a vertex of , that means 

 is  inside  Now  will be defined as the sum of all the , where  are 

mapped onto  by   
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There may be several points which are mapped onto  by this by  So, take all of them and 

evaluate them at alpha and take the sum. So, the right-hand side here is a real number, a non-

negative real number. This sum may be empty also, there may not be any  mapped onto , 

this sum may be non-empty, or the sum itself maybe 0 for each  may be 0, so that is also 

possible. The sum total we have to see that it is less than or equal to 1. That is important.  It is 

always non-negative, that is fine. If it is bigger than 1 it does not make sense.  But this cannot 

be bigger than 1 because all the time it is some of the vertices evaluated by the same ,  

evaluated only some of the vertices.  Even if we evaluate  at all the vertices, namely, finitely 

many,  the sum total is equal to 1, so this thing is always less than or equal to 1. 

So, as a function it is well defined, it makes sense. One more thing we have to verify so that  

  Namely, in order that  mod phi alpha must be a point of mod K2,  its values at 

all the various points sum total must be equal to again 1. So, if I vary the points   over  

here, then I am going to take all the points inside v1, which are mapped onto various points 

inside v2, but this sum will be taken over all the ’s. 

Therefore, all the v1s will be taken care of. Therefore, the summation will become 1, Therefore, 

this summation on this left-hand side is well defined, defines a function from   to .  

This summation is never infinite, by the very argument I have given because there are only 

values of alpha taken at various points, various vertices.  

Moreover, one more thing we have to verify, look at all the points wherein  is not 0, that 

is called support of mod phi alpha, this support of mod phi alpha must be,  must be simplex of 

 So, why that is true?  
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We need to have support of mod phi alpha as a member of  but this is nothing but phi of 

support of alpha, look at all the points wherein alpha is not 0 only those things will contribute 

and nothing else, all of them will contribute of course, because  then this value will 

be counted in , where   So, support of mod phi alpha is phi of support of 

alpha;   

This is a simplex, phi is a simplicial map, therefore, phi of support of alpha is a simplex. With 

all these things the verification that  mod phi is well defined is over.   

Essentially, you have to think of this as summing up the coordinates. So, if we are working 

with product topology, automatically this will be a continuous function but we are not working 

with product topology. What we are working with is this weak topology, we have to verify that 

 is continuous. But verifying continuity is easier in the case of weak topology.  
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Restricted to any closed simplex ,  is  a linear map, affine linear map, when I say linear 

here, it is affine linear. Namely,  Here, alpha and 

beta are elements of this closed simplex. Therefore, this convex combination makes sense, that 

will also an element of closed simplex, mod phi of that is t times mod phi of alpha plus 1 minus 

t times mod phi of beta. Can you say why? Evaluate both sides at each vertex      of  and 

check that the two sides are the same, you can see or go back to this definition. 
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The left-hand side is  operating upon vertices which are mapped 

But before taking the sum you can pull out this t  and 1-t out and  we get   
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Therefore, upon taking the sum, we get the sum of two terms  

  And this is nothing but the RHS.  

    

So, if you restrict mod phi to closed simplex F it is continuous because it is affine linear. Since 

this is true for every mod F, where F range is overall the simplices of , that is enough   for 

continuity  from mod K1 to mod K2. This is one of the criterions for continuity, this is the 

definition of the weak topology on mod K1. So, we are successfully defining mod of phi for 

each simplicial map phi from  to . 

Thus  on  each chunk of simplexes,  on a line, on a triangle,  on tetrahedrons and so on,   will 

be  linear (i.e., affine linear, there is no origin for all of them). So, this is what is going to be, 

what we are going to say unifying the concept of linear approximation now. So, we have 

generalized just the linear map which is very rigid.  

So, now, we can cut down one linear map in a small portion, another linear, another linear, 

combination of linear, so this is what is going to happen with this one. So, in some sense you 

can think of this mod phi as a linear map, all simplicial maps give back on mod K on the 

geometric realization something like a linear map. Especially, they will be continuous also. 
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Another interesting thing here is that under composition this mod is compatible. Namely, first, 

you take  and then follow it by , these two are simplicial maps, you get . Now you take 
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the mod of that, it is eqaul to  the composite of the two  to moduli, viz., .  And modulus 

of identity is the identity. That is pretty clear because look at this definition here. 
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If  is the  identity map then ; there is no summation nothing. So, phi of 

alpha will be just alpha. Similarly, if you take another psi on this one, mod phi is done if you 

take another psi of that, by very definition, which psi of this one you have to take, psi of alpha, 

mod psi of alpha is again have taken the similar definition.  

So, it will be a composition, so composition is also not difficult to verify. There are finite 

summations, you can interchange the summation also if you like, there is no need to do that, 

but you can say that the total summation is the same thing as the ones you to take the summation 

and other summation. So, composition is also difficult to verify. 

Student: Hello sir, like for phi map, where simplex is mapped to a simplex, is it the same 

happening with mod phi too? 

Professor: Mod phi is on geometric simplex, it is going  inside geometry simplex, mod F you 

have to take bracket F closure of F, it will go to phi F closure, it will go inside of that that is 

all, that is what we already define. Support of phi alpha, this will tell you, this precisely tells 

you that.  

460



(Refer Slide Time: 13:50) 

 

Restricted to each simplex it is inside, taking inside to that one. Support does not go out of that, 

phi of support this tells you the story. 
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Support of mod phi alpha is phi of support of alpha, phi support of alpha if support of alpha is 

F, and phi of support of alpha is phi F that is a simplex. What you may have is here you may 

have an edge there may have just a vertex because both the vertices of the edge might have 

mapped to the same point.  

Here you may have tetrahedron there you may have a triangle. If you have an edge here it will 

not the image will be a tetrahedron because there are only2 elements, function, saturated 
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function will take only a smaller number of points, if at all, at most, that many these are all 

finite sets. Phi of any of those sets. 

Vijay Sipani: Yes sir. 

Professor: Will ever put that many elements but it is simplex in the other simplicial complex 

 and K2. For,  and  may be the same also, that is why you can talk about the identity 

map, identity map is automatically a simplicial map. 
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Now, we go ahead, what we do with simplicial maps and so on. By a triangulation of a 

topological space X, we mean a pair, a simplicial complex  and   a homeomorphism  from 

mod K to X. You start with a topological space X it has no structure of a simplicial complex 

or anything but  is a simplicial complex and mod K is the topological space. 

The function  is a homomorphism. So this is the definition of a triangulation. The 

word triangulation is borrowed from 2-dimension.  When you take a surface, and cut it into a 

number of triangles. But now, we can use it for one-dimension, zero-dimension, n-dimension, 

fifty-dimension all of them. The word is only `triangulation’ all the time, though you do not 

see triangles, if you go to three-dimension there will be tetrahedrons, and so on. 

This notion  has a parallel in  measure theory—all the time you keep using the word `volume’.  

The two-dimensional volume is area, one-dimensional volume is length, but we do not have 

many words. So, four- dimension, five-dimension we are just taking volume it is just like that.  
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So, if we select a specific triangulation on it, then we call it a simplicial polyhedron, there may 

be several triangulations for a given topological space or there may not be any. 

If there is one, then we say X is triangulable. If you fix one triangulation, then X is called a  

triangulated space or simplicial polyhedron, sometimes just polyhedron. So, do not confuse 

this polyhedron with convex polyhedron inside . A convex polyhedron is a special case of a 

polyhedron that is all. 
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Now, we will have some examples here one by one.  Recall that the join of two  topological 

spaces is defined as the  quotient of ,  wherein x comma 0 comma arbitrary y1 

was identified with x comma 0 comma y2, y1, y2 vary over Y. Similarly, on the other end, x1 

comma 1 comma  y was identified to x2 comma 1 comma y, x1, and x2 varying over X and y 

is kept as fixed. So, this was the definition of the typological join of X and Y and we have also 

defined the join of two  simplicial complexes. So, these two are not entirely distinct. There is 

a close relation between them.  
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So, if  and  are any two simplicial complexes, then  is the join  and  that 

is   homoeomorphic to  .   is a polyhedron,  is a polyhedron, and look at 

,  you do not know whether it is a polyhedron. Not only it is a polyhedron, it is 

triangulated by just .  mod of K1 star K2 is homoeomorphic to this is the conclusion 

here. 

Indeed, this homeomorphism is such that (remember that  and  are subspaces of their 

join and here  and  are subcomplexes of .  Therefore, here also and  will 

be subspaces of  Under this homeomorphism, these subspaces are mapped to the 

corresponding subspaces identically.  So, that will be easy, that will follow by just looking at 

the homeomorphism that you are constructing. So, what do we do? 

We construct the map at the mother level, i.e, before taking the quotients.  So, this is the left-

hand side. Remember, what we have is . I am defining map from 

  So, this is a quotient space of . So instead of 

defining it on the join, I am defining a map on the mother itself then verifying that it factors 

down to the quotient.  This is the way continuous functions are defined on quotient  spaces. 

So, how do we defend this one? An element of this, remember, can be thought of as a line from 

a point here and  a point there, the line segment. So, a point alpha, a point beta, and a point 

 between. So, this is a product, there is some identifications later on, so I am not going to 

use identification right now, so I directly taking the product. Assign it to 1 minus t times alpha 
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plus t times beta which is finally supposed to be the line segment. That is why I am defining it 

like that:  

Now, alpha and beta, what are they? The 1 minus t times alpha plus t times beta should make 

sense here. So, how does it this make sense here?  (and ) are functions respectively on the  

vertex sets  (and )  into .  Remember how  is defined. The vertex set of 

is the disjoint union of vertex sets  and   Therefore, alpha which is a function on  (and 

,  a function on ) make sense  as a function on   by extending it by on 

( respectively on ); that is the meaning of this one. Next  and  also make sense and 

so we can tale their sum, which happens to be a well defined function . Moreover 

the support of   is contained in the   union of the support of  and support of  which 

is simplex in  

 So, first of all, you have to see that if I put t equal to 0 then beta is not at all coming into 

picture. Similarly, if t is 1 then alpha does not come into picture this will be just beta. 

Therefore, by the very definition of the identifications,  the function  factors through  the 

quotient map to define a continuous function continuous function 

 So, the definition is fine, now we have to verify that it is a 

bijection with a continuous  inverse. The bijection is already taken care of by the very fact that 

by the expression here, what is the meaning of expression on this side? 

Here you must remember that simplices is here are just disjoint union of simplices here and 

simplices there. So, modulus of those simplices are just nothing but points of this way and then 

you have to take 1 minus t times this plus 1 minus t times. The sum total has to be 1, that is 

why you have to take, cut it down by I say 1 minus t plus t then take this out. So, there is a map 

that lets us see why this is  continuous.   
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Suppose   is inside  and  inside  are some faces. Then restrict the entire  to just these 

faces. The image never goes out of  . Indeed, we get a map 

 It is straght forward to check that this is a homeomorphism.  

Every  element  in |  belongs to a unique , where  is a simplex of  Every 

such simplex  is a disjoint union , with , in a unique way.  From these two 

obsrvations, the bijectively of    follows.  The continuity of the inverse follows from that of 

the restriction  
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So, the restricted map is actually is an affine linear isomorphism.  
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Thus  the simplicial joint corresponds to the topological joint when you take the geometric 

realization, so that is the meaning of this. In this correspondence  is v canonical, the   have 

obtained. You see, there is no other structure here it is just the structure of this intrinsic structure 

of these two things are used. 

So, this will automatically give you  associativity as well.  K1 star K2 star K3, all of them are 

associated to K1 star K2 star (())(28:53). So, this is what we call a canonical  homeomorphism. 

And the simplicial map if K1 to K2 they are simplicial map K2 to K3 then you go their 

correspondence simplicial map there is a commutative diagram under these homeomorphisms.  
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This is the generic thing. Let us now specialize.  You can take  to be any simplicial complex 

, but take the second,  a single point. Then by the definition  is nothing but the cone 

over . First take the cone over  and then take its geometric realization.  This is the same  as 

taking  the geometric realization and then take the cone over . So modulus  of the  cone over 

a simplicial complex K is in fact that the topological cone over .  Because  we have , 

.  

 In particular  is contractible. Similarly, if you take X star with the two point space   

. You see that is the  suspension we have defined. So, you can take ,  here 

and then take the modulus that will correspond to suspension of , this also this part we have 

already seen. 

Repeated application of  gives you what?  So, if you tak n+1 copies  that  

gives you .  In particular, if you start with some simplicial complex  such that geometric 

realization of that is a sphere of some dimension , let us say, then if you take the join of these 

two, then take the geometric realization it , that will do same thing as join of the two spheres 

correspondence spheres  which will be equal to .  So this is what we have seen join 

of these two, so this is a special case of this one. So, you can use many special cases to derive 

various results from this joint. So, let us say some more examples, the simpler example now.  
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The convex hull of our set  inside  is easily seen to be isomorphic to the 

geometric realization of standards simplex . That is what we have seen by definition. We 

shall now use this symbol now,   for both of them whether it is inside  

we will use the same symbol   for the geometry realization, and the standard n-simplex. 
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All spheres and discs are triangulable, it means what? There is a polyhedron, there is a 

simplicial complex, mod of the simplicial complex will be homeomorphic to these spaces. So, 

what are these, suppose n is 0, what is ?  naught a single point. what is ?   is the two 

point space.  So there is nothing to prove there, so singleton, doubleton they are triangulable. 
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The simplest polyhedron is  for any q-simplex  which is   is homoeomorphic to , mod 

delta q that is what you have seen. So, we have been telling that this    is homoeomorphic to 

the unit disc .  So, just to recall all these things, I will tell you how we have done it. 
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Let me start with a set of vertices   for . An element  of  is described 

by describing its coordinate functions, values of the coordinates   ( ). 

alpha is a function from this set V into , such that  Thus, mod F is a subspace of 

 consisting of  of elements  such that  You can see that it is a 

convex hull of, .  It makes an  angle    with the x-axis or x0 -axis,  whatever, 

so rotate it through an angle      so that it will be contained inside some horizontal plane 

.  

Next, choose the origin at the barycentre of , what is the barycentre of   ? It is 

 , you think of that as the origin. Then you take .  x going to  

to get a homeomorphism of ,  the union of all the boundary faces onto the round   sphere 

.  
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So, here is a picture this is a triangle, you can say, these are   and  ,  then the convex 

hull of that is the triangle.   The triangle is making 45 degrees with the x-axis.  you rotate it  

and  translate it to bring this point  to the x-y plane, the the entite triangle inside  x-y plane . 

Rotation and translation because I do not want to change its geometry just for a while.  

So, then this has become horizontal in the horizontal plane. you choose the orthocentre or 

barycentre as the origin then you take x by norm x; project all of the boundary of this triangle 

goes to this sphere homeomorphically, this is just like a projection map. Once you have a 

homeomorphism over the boundary to the  you can use the so-called cone construction to say 

that the full disk is homeomorphic to the full simplex.  

So, I will describe that one in general.  So, this is what is going to have triangulation as a pair, 

this is supposed to be the full disc  and the boundary. Simultaneously, the pair gets 

triangulated, triangulation means now what? You have a simplicial complex is the boundary 

of simplicial complex giving you when you take mod respectively the Dq and Sq minus 1. So, 

I will describe this cone construction once for all again and again this will come.  
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Remember the boundary of F is nothing but all the subsets except F itself. So, I want to say 

that, this is going to give you , so this part we have seen. Now, you take the cone over this, 

that is going to be the same thing as F is going to give you F back when you take modulus. If 

you take the cone over F, see for each subset of F you have to add an extra point.  

So, that will give you the full set F, the maximum set F one point was missing, the cone will 

come there and it will be the full set. So, this is one way of looking at the boundary of BF, the 

cone over that one is homoeomorphic to again mod F. Modulus of BF is homoeomorphic, so 

this is what we have to use on both sides now. So, this is what I am saying. 
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Now appeal to the following fact, simplicial complex F is isomorphic to start off, this is the 

star a single point is a cone, this is the join of the single point at B F. Therefore, mod F is 

homoeomorphic to the cone, the cone over BF. I take BF and takes modulus of that and then 

take the cone.  

First, you take the modulus or first take the cone or then modulus this gives us the same thing, 

which is in term homoeomorphic the cone. Which again is homoeomorphic to the full disc, this 

was also what we have seen. So, a cone over any sphere is homoeomorphic to the disk. Let us 

stop here. 
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