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So, last time we have introduce the definition of  when K is a simplicial complex. So, today 

we study the topology on mod K. Before that, let me just recall  the definition and a few 

notations. 
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So, we took  as a subset of the product set   taken V-number of times, number of 

vertices in V, whatever that many copies of  is taken, which is the same thing a taking functions 
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from V to . Additional condition that  the support of alpha, viz,  set of  points where alpha is 

not 0,   must be a member of  and the sum total .  
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After that we introduce two notations. For each simplex F, the closed simplex ,  bracket F, 

close bracket, this is the set of all  for which the support is contained inside F. This same thing 

as saying for every  v inside ,    The second one is the open simplex which 

is the set of all  such that  if and only if    That means that,  

for every  which is the  same thing as saying  . Then boundary of F,  was 

defined as the closed simplex minus the open simplex. Let us come to the topology now. 
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I will first treat  the finite case because it is simple, that is all and it gives you the motivation. 

 is finite, same thing as  is finite. Then  subset of  cross  cross... V number of times as 

many as elements of V. So, it is a finite cube  cross  cross ...V the finite cube. So, we can just 

simply take the subspace topology from this  which is  nothing but ,  is the cardinality 

of .  So, this  is a familiar object for us, you see,  we are inside  . 

So, take the induced topology namely, the subspace topology. Then you call it the  Geometric 

Realization of K, Geometric Realization of K and denoted by .  It is not just a set. It has a 

topology, what is this topology? At least in the case of K is finite it is the subspace of   

defined in a particular way. Anyway,  it is a subset of I power V already, you take the subspace 

topology. You already noticed that it is  given by a closed condition, so  is a closed subset 

of this one. 

In particular, it is compact, being closed subsets of a compact space. It is compact and each   

is again a closed subset of , that is also given by a closed condition. If conditions are all 

given on the coordinate functions equal to something, then the  intersection of several such sets 

here,   all of them closed. So, it becomes a closed set. 
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Note that closed simplex F has  a natural convex structure coming from that of .    is a 

convex set in .  So, that convex  structure is there on  .   Even the open simplex   itself 

is a convex subset. For, if alpha and beta are inside this closed (open) simplex, and t is between 

0 and 1 and t times alpha plus 1 minus t times beta is again is an element of  (resp. ). 

What is the meaning of this? 
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Take this one say this is    implies that  why?   then 

 or  and in either case,   . If  is a point outside F then both 

 and hence . Therefore the support of  That is the same as 

saying that  is inside the closed simplex F.  

You may identify  with a convex subset of . You see that   in a natural way. 

It  is actually a quotient a retract of , because , so given , you can extend it as 

a function  by putting    

So, there is an identification of this one also. And of course, inside that you have to again take 

the condition to that  So, what is the thing? I have just excluded all those 

coordinates for which these points is 0 anyway, so that is why I have taken only this part, that 

is all. 
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Now, comes the more interesting topology. The relative interior of .  The    interior 

of a subset inside a topological space is not exactly same the interior of  of this  in  topological 

space X. The relative interior has to be define inside the space, it is a tricky thing. So, this can 

be done for geometric things, so that is what we are going to do. 

For example, suppose you have a closed interval contained in . As subspace of , but it is 

actually  inside . In , the closed interval has its interior which is the open interval, but as a 

subspace of  , it has no interior. So, this open interval is the relative interior of the 1-simplex 
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irrespective of where it is contained in. So, we are defining the word  `irrespective’  , what is 

that? 

Interior of F, int(F) is precisely consists of  those , for which  

This is  another notation now, for a set which we have already defined, viz., it as open simplex 

F, . 

 Now, why this is called an open simplex F? It is the interior of  in the usual sense. So, inside 

this ,  open F is an open subset. The boundary of F by its very definition will be a 

closed subset consisting of those  such that   for at least one of the vertices of 

. 

So, it is inside that proper subset union of subsets. Second point, again I am telling you. The 

closed simplex F is homoeomorphic to the geometric realization of F, where F is thought as a 

simplicial complex. Given a simplex, you take all its subsets that is a simplicial complex then 

what is the geometry realization of this? You have to take all functions from  , such that 

the sum of the vlaues is 1.  That i how   mod F can be identified with a subset of  .   The first 

condition on the  support of  is automatically satisfied  because every subset of  is already 

inside the simplicial complex.  

So, this mod F, this bracket F is a subset of some simplicial complex , the geometric 

realization , can be identified with geometric realization of the simplicial complex F. Each 

map   can be identified with the extension  F where  for all   

outside F and  
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Now,  inside  what happens to the intersection of  and  ?  Look at two simplices   

and  in   I am talking   inside   I will  say that this precisely equal to .  

F1 intersection F2 if it is empty, then it should be empty. Those which have supports inside F1 

and those which are supports inside F2 also,  F1 and F2 are disjoint, there cannot be any such 

element, they will be totally disjoint.  

Therefore, if  it is Ok.  But suppose it is non empty. Then it is a simplex in , it is 

a face of both  and .  Now I will  say that  . This is very 

straightforward set theoretic  you see.  Support of  is contained in  iff its contained in 

both  and  That is all.  

Moreover,  the two subspace topologies on the intersection coming from or coming from 

 , they coincide. This is very important thing we have talked. Because they are both equal 

to the subapce topology directly from . Indeed that topology is homeomorphic to the 

topology on the standard simplex in the Euclidean space. 

So, whatever tentatively I have put  is now the same thing , where  F is a face of K. As 

soon as it is a face of K,  this is a closed subset of . There is a family of closed subset, 

everything in K must belong to one of them, it is by definition every element of mod K has 

support in one of the faces. 

So, this is a cover for  but it is not an open covering it is a closed covering. It is a finite 

because K itself is finite I have taken. Clearly a subset   G  of     will be closed if and only 

if G intersection with  is closed in  for every F in K. This is the property of any finite 

closed covering for a topological space, it is an elementary property. How you define a 

continuous function on two closed sets continuous on each of them and on the intersection, 

they agree automatically is continuous on the whole space. 

So, this is true for finite covers which are closed on each of them if you verify continuity and 

all the intersections the functions agree that function is defined on all of it then it will 

automatically continue. So, the same thing as saying that G intersection mod F is closed for 

every F if and only if G is closed. So, it says the standard wording here namely, it is a weak 

topology with respect to the above covering. 

If you know, if you recall your point set topology, this property gives us an idea how to get a 

good topology on  when K is infinite. This property is going to be our guiding principle now 

for defining a topology when K is infinite, so that is not finite. So, let me complete this one. 
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Let  be infinite set.  is always a subset of , a closed subset of I raise to V, by definition. 

You can put the following metric now, first I will put a metric on this  of course, for I raise 

to V, V is too big. So, I do not want to put a metric on that. What is it? Take any two elements  

. Both finite sums. We have seen that   is  

coordinate of . that is the meaning of this summation,   and only finitely many i.  

Similarly,  is a finite combination like this. So, this is just a tentative notation, if you 

identify vi with an element of , how do you do that? It is vi operating upon vi is 1 and vi 

operating on any other vj is 0. So, that is the element, these are the standard basis elements for 

I raise to V. 

So, in that sense this summation makes sense, summation beta i vi belonging to . We know 

that alpha i and beta is are 0 except for finitely many i, which is same thing as that these two 

are finite sums. Then, I can define distance between alpha and beta to be just the square root 

of the sum of the squares of the differences just like in the Euclidean space, take the coordinate 

functions, take their differences, take the square of that, take the sum, and then take the square 

of that, this makes sense because only for finitely many i's these are nonzero, I raise to V I 

cannot do that because this is too huge,  then infinitely many coordinates may be nonzero. 

So, for mod K you can do that because  is contained inside, I raise to V for which, so this 

makes sense, direct verification just like in a direct sum of vector spaces this will be become a 
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metric and we have a metric topology now, if its K is finite this is just the Euclidean metric in 

 because all those things I have to involve now. 

So, whatever topology we have analysed for K finite that is metric topology only, from a 

Euclidean space, but we are using a different property of that space and then we will work to 

do this one, this metric topology on infinite thing is not a good thing for us. So, we will modify 

it. 
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Let us denote this  with the metric topology by .  The suffix d because we are not finally 

interested in this one, this is only an intermediate step. Clearly, it coincides with the Euclidean 

topology when V is finite. Therefore, topology induced on each  from  is the same as 

Euclidean topology that we have been taking namely of the standard simplexes and so on, that 

is what we have done so far. 

For each , the topology that we have defined using an isomorphism, using a homeomorphism 

of this one with a standard simplex. That topology is the same as the subspace  topology from 

.  
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Now, I want to redefine the topology on the whole of  by declaring a subset of A, a subset 

A of  is closed if and only if, A intersection  is closed in , for every F in . This 

property which we have verified  when K is finite, this becomes the definite defining property 

for the topology in the general case,  a subset is closed if and only if intersection with each  

is closed in .  So, this is the (weak) topology coherent with respect to the family of closed 

subsets . 

Clearly, this topology is finer than .  If A is already closed inside , then A intersection 

  will be closed inside  as well as  because  has the same subspace topology from . 

So, all closed subsets of  are inside this topology, weak topology. This is a funny name 

this is called weak topology for some different reason, but with respect to this ,  it is 

stronger than the topology of  because everything closed subset inside   is already 

closed here. It is the finer than  topology than . A metric topology has certain properties. 

 is even better. It has  more open sets. The one good reason for taking this week topology, 

( I have put it in a bracket because this is not  weaker than  but it is actually finer) instead 

of the metric topology is that constructing continuous functions on  becomes simpler and is 

coherent with our theme that the simplices are the building blocks of simplicial complexes, so 

this is the motivation I will restate it as a theorem.  
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Take any topological space X, or  this X should be Y. Then take any topological space Y, a 

function  from  to Y is continuous if and only if restriction map of f  to  to Y is 

continuous for every F. What is F? F is s simplex in K.  We write this one all the time instead 

of writing .  To be accurate, we must say,  for every   inside , the set of simplices. 

Likewise, a function  from   is continuous if and only if  restricted to  

is continuous for every face  The first statement is follows directly  from the definition 

of the topology on . Take a subset here which is closed, its inverse image is closed here is 

what I want to show. The inverse image here is nothing but F restricted to F inverse of that set. 

By definition, if this is closed, but if this is closed for every F then that is closed because that 

is the weak topology and conversely, this is fine. 

 But now same thing is claimed for the product, for this careful proof of this one has to be 

written down and that uses function space topology.  
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To prove the second part (first part I have done): We know that,  is locally compact. In fact   

is compact an Hasudorff.  Whenever we have a locally compact Hausdroff space,  we can use 

that exponential correspondence theorem. 
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So, I am just recalling the exponential correspondence theorem. If  is locally compact,  and 

 are any topological spaces, the evaluation map E from  to  given by 

 is continuous. And any function from any topological space  to  is 

continuous if and only if  is continuous. These two theorems, this was part A, 

part B  of that exponential correspondence theorem. So, I put   to be the closed interval [0, 

1]. That is allowed because  is a locally compact. 
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We put   and  . Then you can define g from this  to this ,  is an  arbitrary 

space,  by the formula  Remember  is given function from    to . 

So, first coordinate is in , a second coordinate is in . Then  take E composite g cross Id that 

will be precisely H, that is the definition. Hence,  is continuous if and only if g is continuous 

by exponential correspondence theorem. 

Now, from the first part, g is continuous  if and only if g restricted to each  is continuous for 

every . Which is same thing as, now going  back to exponential correspondence this g 

restricted to  is continuous if and only if E composite g cross Id restricted to this one, which 

is same thing as  restricted to ,  is continuous.  

So, exponential correspondence is used, first go to the power here and then come back both 

sides here if and only if this part has to be use. We will stop here. Next time we study maps 

between simplicial complexes, what kind of maps we have to study there, okay. Thank you. 
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