
Introduction to Algebraic Topology  

(Part-1) 

Professor Anant R Shastri 

Department of Mathematics 

Indian Institute of Technology, Bombay 

The Harvest 

Lecture No. 22 

(Refer Slide Time: 0:16)  

 

Today’s session I have called The Harvest. Because whatever hard work we did for past few days 

we are going to reap it now. A lot of results will be prove using whatever hard work we have done 

for past few days. One of the landmark results will be the invariance of the adjunction space. 

Details we will see in  what follows now.   
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So the first thing is this result which relates the weak deformation retract, the deformation retract 

and strong deformation retract. We know that these things are one stronger than the other. But 

when would they  be equal to each other?  That is the kind of thing we want to see. The first thing 

says the following:  you take a cofibration from A to X. A is a subspace which is closed, A to X is 

a cofibration. Then the first thing is that if A is a weak deformation retract, then it is a  deformation 

retract. 

The `only if’ part is what we need to verify.  If it is a deformation retract, it  is a weak deformation 

retract-- that is obvious. So if A is a weak deformation retract of X if and only if it is a deformation 

retract of X. The next thing is namely (b). If A happens to be contractible, then as if the entire 

subspace A can be thought of as  a single point homotopically. So the correct thing is to go modulo 

A, namely, identify the entire space to A to a single point, take the quotient space, the quotient 

map itself becomes a homotopy equivalence. 

But this you may expect always but it is not always true.  It is true under the hypothesis that A to 

X is a cofibration. So for nice  subspaces,  this is true. Third one is slightly a different variation of 

the same phenomena. Instead of quotienting  out A, you keep the subspace A as it is but take 

homotopy  relative to A. Then can you say that contractibility of A will imply  anything under   

homotopy relative to A?   
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That is again not true. You need this time, even stronger hypothesis. Namely, a point a0 in A, 

wherever you want to concentrate the whole of A,  should be  a strong deformation retract. If A is 

contractible,  a0 is a deformation retract of A, but may not be strong deformation retract. If it is 

strong deformation retract, then the inclusion map the pair (X a0) to (X,A) is a homotopy 

equivalence.  

So it is like all homotopy information now inside A. Whenever you want to control A, it can be 

done  by just controlling the point a0. So these things are themselves very useful in homotopy 

theory. So we are developing the homotopy theory. Here is a step, --smaller things to largest things. 

So let us go through the proof of these statements which are now more or less just one-line proofs. 

Thus the hard work is already done.   

So how to say something is a deformation retract when it is only a weak deformation retract? 
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So, given a homotopy inverse r0 from X to A, remember that  the inclusion map is a homotopy 

equivalence is the same thing as saying that A is a weak deformation retract. So r0 is not  the 

inverse of ,  r0 is the homotopy inverse for the inclusion map . 𝜂  is homotopy equivalence is 

same thing as saying that A is a weak deformation retract, by definition. So take r0 as its homotopy  

inverse. 

Let F be a  homotopy from r0 composite 𝜂 to identity, because these two are homotopic because 

this is the   homotopy inverse of that. So let F be such a homotopy from A × 𝕀 to A between r0  

composite 𝜂 and identity of A. With this much of data, we have to  get a deformation retract. The 

key is to use the fact  that A to X is a cofibration. So go back to your definition of homotopy 

extension property namely, that is the figure that   I will reconstruct it here below.  
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So what I have is A × 0 to X × 0, an inclusion map. Here I have put, instead of g in the original 

thing, I  have put r0 here now. This is the homotopy inverse of . And F is the corresponding 

homotopy from A × 𝕀 to 𝕀. So we take this commutative diagram which is automatically implied 

because this is a cofibration-- that is, the homotopy extension property implies that there is a 

homotopy H from X × 𝕀 to A, which fits this diagram. 

Namely, restricted to A × 𝕀, it is F, restricted to X × 0 it is r0. So that is what I am going to use 

now.    

Student:  

Hello sir, would you explain the diagram one more time,  say why it is homotopy extension for 

what it shows. 

Professor:  

A to X has  the  homotopy extension property is the assumption. You see that this is a cofibration 

on the left, --a blanket assumption is made. Cofibration means what? homotopy extension 

property, for every space, and  every map and so on. This side you can choose. As soon as you 

choose this so that that is a diagram commutative, there is map here. That is the conclusion. So F 

is extended to H-- that is the  homotopy extension property.   
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So I am going to use that now.  So you have  H from X × 𝕀 to A such that H restricted to this A × 

𝕀 through 𝜂  × identity is F. Restricted to X × 0, its r0. But then H defines a homotopy between r0 

and identity of A. Because H restricted to X × 0 is r0. H(a ,1) will be F ( a,1) that should be identity.  

So  this also implies that if you take r1= to H on X × 1, 𝜂 composite r0 is homotopic to  𝜂composite 

to r1. But we know that 𝜂  composite r0 is homotopic to  identity of X.    

So we have got that r1 is a deformation retract. So a weak deformation retract became a deformation 

retract as soon as A  to X is a cofibration. That is the key here.  

 Similar thing we can do on the second part  here: if A is contractible, quotient map X to X / A will 

be a homotopy equivalence. So let us go through this one now. 

(Refer Slide Time: 10:14)  

 

F is a map from A × 𝕀 to A, is a homotopy of the identity map with a constant map,  a0 is a point 

of A.  That is the meaning of A is contractible-- identity map of A is homotopy to a constant map. 

This time, instead of taking A here, I take this space to be X here. Actually in the original definition,  

we have `for any space Y and any map g like this’ and so on is there. So instead of that Y, I am 

putting, this time, here I am putting Y to to be X itself.   
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And this map will be taken to be the identity map. That is what I am talking in figure 4.  Again 

you get a capital H here to fit the diagram. Here again, I am using the fact that A is a cofibration. 

So this time it is  X and instead of r, we take  identity map. Restricted to A it is homotopic to a 

constant map, F on A,1 will be a constant map here. So that is the homotopy F. This is homotopy 

data, and  A to X is  cofibration gives rise to this conclusion, namely there is an H here which fits 

into this diagram. 

So what is the meaning of that now. Restricted to H restricted, sorry, H restricted to X × 0 is 

identity. On  A × 𝕀, it is F. So what are the properties this H?  h1(x) which is H(x,1).  H  on A × 1 

here has the property that it is F  on A × 1 which is constant map a0. Which means all of the points 

of  A, belongs to A,  they are going to a single point. 

Therefore, this map h1 factors down through the map q from  X to  X / A and  gives you a map g1  

from X / A to X. So that is what I am calling  g1. Because under this h1, all points of A are going 

to single point which is the single point identification in  X / A,  representing  one single class. So 

this  g1 is from  X / A to X. This h1 is X to X, just I am writing what is the property of g1,  h1  = g1 

composite to q. 

Also we a  homotopy start with q × identity.  See, H is from X × 𝕀 to X, then follow it by q. That 

means I have quotiented it out the all the points here. Then q composite H factors  through q × Id  

to define a homotopy  G from X / A × 𝕀 to X / A. The points of A which have been identified here, 

they are identified here also. That is what you have is q × identity followed by  G is the same thing 

as q composite H. 

So what is this map G? G is a homotopy on (X / A) × 𝕀  to X / A. On (X / A) × 0, it becomes 

identity map from X / A to X / A. That is the starting point. And the end is q × g1, q composite g1. 

So it is a homotopy between identity and q composite g1. Which means q has g1 as its right inverse,  

a homotopy inverse.          
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And that is enough to conclude that q a homotopy equivalence. So g1 composite q is this  h1 which 

is homotopic to identity. 

 

 The last one (c)  is special case. What is this definition of SDR?  You have, instead of arbitrary 

contractibility, for  contractibility you are have just a homotopy from identity to constant map, 

strong a deformation retract means this homotopy is relative to a0.  

The same argument as in (b) will give you, same g1 and so on,  all these things are  same as in the 

previous case, but now I have the homotopy being constant on a0. So that is the extra thing here. 

So that will tell you that h1 is a relative homotopy, it means that the homotopy from h1  is constant 

on a0 that is all. Whatever we have got there is then a relative homotopy on a0 ,with respect to a0.  

So this will conclude that we have maps  (X ,A) to (X, A).  In this case you do not have to go down 

to X / A at all. Half way here in this proof,  before going down, as soon as you have  got this  h1 

which  is a homotopy inverse relative to A. So stronger hypothesis gives you an easier conclusion, 

a stronger conclusion.   
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Next,   many books just say  `contractible therefore you can collapse’ without giving any  proper 

reason. I have given you a proof and the proof is correct only if A to X is a cofibration. In fact we 

will have easy counter examples when this is not a cofibration.  You cannot just take X / A and 

say that it is a homotopic to the original space X.  

So next result: Take a map from X to Y.  It is a homotopy equivalence if and only if X is a 

deformation retract of Mf. 

Remember Mf is a quotient of X × 𝕀  and disjoint union Y by the identification x ,1 is identified 

with its image f x in  Y. We also know that Y itself is a strong deformation retract of Mf. Now 

results says that  f is a homotopy equivalence iff X is a deformation retract of Mf.  

Suppose you assume that  X is deformation retract of Mf. Then X to Mf the inclusion is a homotopy 

equivalence, f hat from Mf to Y  is a homotopy equivalence. The  composite will be a homotopy 

equivalence then. That is precisely f.  Inclusion map followed by whatever you have got, viz,  f 

hat is identically is equal to f. You have seen that right? So one way is clear that if it is a 

deformation retract then f must be homotopy equivalence. For the converse, hope you can prove 

the converse. I have already given you here the prove of one way: namely the  inclusion map is a 

homotopy equivalence (is a same thing as saying that X is a deformation retract of Mf and this) 

implies  f  is a homotopy equivalence. Inclusion map followed by f hat is f. What is f hat? f hat is 
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strong deformation retraction from Mf to Y. So that is why the composite will be a homotopy 

equivalence. So let us prove the converse.  
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If f is a homotopy equivalence, then again from theorem 4.3(a),  the inclusion map X to Mf will be 

homotopy equivalence. Because f is i composite  f hat. The result says that if two of them are 

homotopy equivalences then the third one is homotopy equivalence. I think this is one of the 

exercises (but not a theorem) in the  very beginning. Hopefully you have done that exercise by 

now. Now you combine part of d in 4.3 with theorem 4.4, one which we have just seen. To 

conclude that X is a deformation retract of Mf. 

 What are these results? First thing is that inclusion map of X in Mf is a cofibration. This is the 

first one of the results, part (d) of theorem 4.3. And the previous theorem says that if  a cofibration 

is  a weak deformation retract then it is a deformation retract. Weak deformation retract is same 

thing as inclusion map is homotopy equivalence. I repeat: once the inclusion map is a homotopy 

equivalence and it is cofibration then it is a deformation retract. 

So this was the theorem that we just proved here a, b, c three parts of the theorem. So use that, so 

we get the converse here. So the corollary is proved namely,  a map  is a homotopy equivalence 

between two spaces  is the same thing as saying that the domain is  a deformation retract of the 

mapping cylinder.   
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Now we come to another result--- all landmark results in homotopy theory. Two spaces are 

homotopy equivalent, if and only if there is another space W which contains both of them as 

deformation retracts. This is  not just  for fun. Sometimes there is no other way to show that  two 

given spaces are homotopy equivalent. This theorem is used heavily in differential topology 

namely, in Cobordism theory. A lot of hypothesis is there with which you want to construct a 

homotopy between X and Y, they are manifolds. 

What you do then? That inclusion maps you construct are into a `cobordism’ W. Then you show 

that these inclusion maps are deformation retractions, and hence homotopy equivalence.  Plus in 

the case of manifolds, they are cofibrations also. Therefore, because this theorem X and Y become 

homotopy equivalent. So one way is obvious. But here we are insisting that you are not l anything 

more,  you are not doing anything great. It is `if and only if’.  This will always happen. 

So that if and only if part what we have seen.  Suppose f from X to Y is a homotopy is equivalence. 

You take W to be the map in cylinder and we have already seen that the inclusion map followed 

by f hat is  f. Now f is a  homotopy equivalence,  is homotopy equivalence, so i will be a homotopy 

equivalence, that is all. And prove the converse here: now what is the statement here, what is the 

converse? The converse is obvious I have not written down here. The converse is obvious.   

Why because X to W is homotopy equivalence and Y to W is homotopy a equivalence means there 

is a homotopy  inverse map from W to Y, you compose  the two-- that is all. So this W could be 
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anything.  But to get one, you have to take Mf.  If this f is homotopy equivalence you take  W to 

be Mf. It may not be Mf always. It could be something  bigger also, something smaller also does 

not matter. If it has the property that inclusion maps are homotopy equivalences from both X and 

Y then X, Y will be a homotopy equivalent.  That is the whole idea.  X and Y will be homotopy 

equivalent. There is no f given in this. You have to construct one. But if f is given then you take 

the Mf as the space W that is all.  
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Now we will get some more results: Take a cofibration X to Z. So here I have changed the notation-

- usually we take A to  X . I have taken now X to Z is a cofibration. Every time I am assuming it 

is a closed subset--- X   is a closed subspace of Z.  Then for every continuous map from X to Y 

the inclusion map of Y into the adjunction space is a cofibration. What is the adjunction space of 

f, f is from X to Y. So it is the quotient of Z disjoint union Y; points of X are identified with points 

of Y through f;  x in  X and f (x) are identified. That is the adjunction space Af  

So, adjuction space of f always contains Y as a subspace. Z may not be a subspace, X may not be 

subspace, because f may not be injective.  Y to Af is an inclusion map, that becomes a cofibration 

under the hypothesis that  X to Z is a cofibration.  Let us suppose that f from X to Y is an  inclusion 

map. Then we are getting an extended  cofibration Y to Y union  Z  from X to Z . 
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So X to Z is a cofibration implies  Y to Af  (is a larger one) becomes a cofibration. So,  more 

generally  than the case when X is a subspace (Y), for any map, f from X to Y.  So that is the 

importance of homotopy theory.  
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So again to check cofibration what we have to do? you cannot go on verifying it for homotopy 

extension property for all functions and all spaces. You have a ready-made proposition there 4.1 

namely,  you  show that A × 𝕀 union X × 0 is a retract of X × 𝕀. In this case what you have to show 

Af × 𝕀 sorry, Y × 𝕀 union Af × 0 is retract of Af × 𝕀 that is what you have to show?  So it is very 
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easy from corresponding statement: The corresponding hypothesis here is that X to Z is a 

cofibration.  

What I get? Z× 𝕀 sorry, Z × 0 union X × 𝕀 is a retract of Z × 𝕀. So this proposition says  first we 

get  just a retract. That’s is good enough. Then we will become a deformation retract. This  is what 

we have seen already. So just retract is enough, a retraction from Z × 𝕀 to Z × 0 union  X × 𝕀. 

Retraction means what? On this subspace, it is identity. Now you just consider Z disjoint union Y 

× 𝕀 -- remember the adjunction space is defined as quotient of Z disjoint union Y.  

So if you want to construct some map on a quotient space, you go back to the mother space here. 

with certain additional property,  you have to define a map so that it will goes down to the quotient 

space. So here I am using the fact that the product I am taking with  is a compact space,  the unit 

interval and  therefore whether you take  first the quotient here then take product or first take the 

product and then quotient, they are same. This is one of the fundamental result we have proved 

and we have used  several times by now.  

 

So I am defining a map  R on Z disjoint union Y × 𝕀 to Z cross 0  disjoint union X × 𝕀 disjoint 

union Y × 𝕀. Here later on, points of X will be identify with f(X), - same thing will be added then 

here. The second factor 𝕀 there is not problem there.  Take R on Z × 𝕀, ( Z disjoint union Y × 𝕀 is  

Z × 𝕀 disjoint union Y × 𝕀),   take R to be   your earlier  ready-made function r here. On Y × 𝕀,  

take R to be  identity. Over.  After that you have to check  that it goes down to define a map from 

Af × 𝕀 to Af × 0 union Y × 𝕀.  This part will be Af × 𝕀 0 union Y × 𝕀. On Y × 𝕀, you have already 

taken identity. 

 So if you try to prove this cofibration  directly you will see how difficult it is--  proving the 

homotopy extension property.  I am not saying that it is not possible. But here, this proposition 4.1 

makes the life very easy.   
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Finally, the homotopy invariance of, of what? Of the adjunction spaces. Take X to Z a cofibration, 

where X is a closed subset  of Z.  Given two functions f and g from X to Y, I am going to take 

adjunction spaces. But if these two maps are homotopic, then the adjunction spaces are homotopy 

equivalent. Even the stronger statement is true namely, as relative pairs (Af,Y), (Ag,Y), Y is a 

common subspace here, (Af,Y), (Ag,Y) as  pairs are homotopy equivalent. 

This was done right in the beginning remember. What is the meaning of this? There is a homotopy, 

there is a map from Af to Ag which is the identity on Y. Similarly, a map from  Ag to Af which is 

the identity on Y , these two are homotopy inverse of each other relative to Y. So that is the strong 

statement namely adjunction spaces  do not depend on exactly what f is but strongly depend on 

the homotopy class [f].  

So this helps a lot while doing  homotopy theory. Often you start picking up a map here but you 

do not pick up the map,  you are actually interested in  the homotopy class of that map. And then 

you want to do something but then you want to say that whatever you have picked up  may induce 

something whereas  if you pick another one it may do something else. No, this won’t happen  for   

adjunction space-- as far this is concerned. The homotopy type does  change.  So this is very useful 

result. So let us go through the proof of this one.  
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Start with the homotopy X × 𝕀 to Y from f to g.  Now you can define the adjunction space of H, of 

this H itself.  You see it is Z × 𝕀 disjoint union Y, X, points of X × 𝕀 being identified with the 

image under H. So that is AH.  That  also contains  Y. So what we are saying is, Af, Y as a pair, a 

topological pair and Ag ,Y another topological pair  both are subspace of AH, Y and  the inclusion 

maps are homotopy equivalences. This  is enough to say that they are themselves w homotopy 

equivalent. But what we are saying that deformation retracts.     

Student question:  

Hello sir, Can you say one more time how you made AH I mean yes how, what is AH? 

Professor: AH is the adjunction space of H. Adjunction space is defined for every map. 

Student question:  

Yes, you used Z × 𝕀 right? 

Professor: Yeah. Because X × 𝕀 is not contain inside Z, but  Z × 𝕀. So that will come.  I have just  

claimed something here--  explanation will come now.  So what is AH?     
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This is the picture. See this is Y, this Y here, X is a single point as shown in the diagram, this circle 

is your Z. You get it? X first goes to this point y. And then this y, we have chosen  a path,  goes 

this point.   A  homotopy of a point map means it is a path here. A homotopy of point is nothing 

but a path as in the picture. I have to  take  the simplest picture. So the first point is  f, the end point 

is g. When singleton,  X is a singleton, map is nothing but a point. Now homotopy is nothing but 

a path here. Here I have taken Ag, and  Af here. This is Y disjoint union Z but X is identified with 

its image. Is this  clear? In this picture I have taken Ag. I want to say both of them are subspace of 

AH here. What is AH? It is from Z × 𝕀, X × 𝕀 identified with its image here. You see it is not a 

straight line now-- you have take the path, whatever path the capital AH is,  the adjunction space 

for H. 

Now is this picture  clear?  Now what I have to show is this part is subspace here that is subspace 

there, they are deformation retracts. The argument is exactly symmetrical if I show one of them is 

deformation retract another one will of deformation retract for the same reason. In fact there is a t 

factor, you have to reverse t to 1- t. Then the role  Z × 0 and Z × 1 will be interchanged,  that is all.   
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So this part is  Z × 1 here, this is Z × 0, when you take the homotopy here. (You see we are actually 

doing much more than Cobordism theory. This looks like a Cobordism when things are manifold 

here they are not even manifolds but we have ̀ Cobordism’ like things here. So  results will be used 

in very deep differential topology.)  

 

So here is the proof.  Finally you have to write down proof.  This is only an idea. 
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Again by this 4.1 what is the assumption? Assumption is that X to Z is a cofibration. X to Z is a 

cofibration that is the starting assumption. We have a retraction r0 from  Z × 𝕀 to Z cross 0 union 

X × 𝕀. This induces a deformation retraction r0 bar from AH which is the adjunction space of  H to  

Y union over H,  Z × 0 union X × 𝕀.  

 Let q be the quotient map from  Y disjoint union Z × 0 union X × 𝕀 to Y union over H (Z) × 0 

union X × 𝕀-- this is the quotient space. This is disjoint union, this is  where this identification is 

taking place. Its restriction q1 to Y disjoint union Z cross 0, (forget about this part.) that itself is a 

surjective map.  Moreover, for any  closed subspace F contained   Y union this part, check that q 

inverse of F is q1
-1(F) union H-1(Y) intersection F.  

This part I have written down only for people who have forgotten that result on  product of 

quotients-- first take the quotient and then the product with the identity map when 𝕀 is compact 
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space,  is the same as  first take the product and then the quotient. This part is not needed if you 

know that result, because I have actually proved that one.  But here, independently,  I am actually 

proving  that this a quotient map.  
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So therefore what you get is that q1 is a quotient map after taking the product. Therefore, this part 

is nothing but Y union over f, Z × 0 because X × 𝕀 part is already covered by Y. So that is Af. So 

this will show you that Af is deformation retract. This part, what is this part? This was deformation 

retract so that is Af what it is Y union H this was a deformation retract.  
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This I showed you is equal to Af. So that care of it. It may take some time to understand why such 

things work. And you may get lost in the notations here. Proof is clear from this picture:  you can 

see what is  happening. Once you have proved that Af is a deformation retract, Ag is also a 

deformation retract; just change t to 1- t; --- symmetric argument. So we can stop here.    
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