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As a student, I was wondering why the several books  give definition of  cofibration for inclusion 

maps only, whereas fibration is for arbitrary map not necessarily for quotient maps. The answer 

was in this result that we are going to do. But there is an even more satisfactory answer. Much 

much later, only some 10 years back, I read it from Hatcher’s book that every cofibration is actually 

an inclusion map.  

So what are we going to do? Because we are studying things up to homotopy, in homotopy theory, 

this result says that any map can be replaced by an inclusion map. And that inclusion map is a 

cofibration. So this was so powerful that now you can think  up to homotopy, every map is a 

cofibration.  

So this completely justifies the somewhat artificially introduced the notion of cofibration. We are 

not claiming that every map is a cofibration but up to homotopy it is. So let us go through this one. 

So, later on, we will see a lot of applications of this and so, this itself is somewhat an hard work 

you have to do now.   
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So here is the statement. Given any map f from X to Y let us construct the mapping cylinder Mf. 

Recall what is Mf. Mf was obtained as the quotient of  X × 𝕀 disjoint union Y by the identification 

namely, each (x,1)  is identified with this image f (x). So I am making this diagram of various 

functions here, X is included in  Mf.  

This map X to Y and Mf to Y. There is an  and then Y is also included in Mf by an inclusion map 

j. So this  is actually an extension of f, because X is  thought of as  a subspace Mf.  So all these 

things I am writing down carefully namely   composite i is f. In the first triangle it is 

commutative,-- top triangle.   
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j composite , in here from Mf to Mf.  
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This map is homotopic to Identity of Mf. So the  second triangle here the bottom triangle---- it is 

not a commutative triangle, it is homotopy commutative. j composite  is homotopic to identity. 

And this homotopy is relative to Y, that is  is a strong deformation retraction of Mf to Y.  

In particular Y is a SDR of Mf. Mf union X ×𝕀 is a strong deformation retract of Mf  × 𝕀. So i is a 

cofibration, the  inclusion map, from (c) to (d)--- you know how to go-- because we have seen this 

one. j composite f finally this j composite f coming from X to Mf, j composite f, it is homotopic to 

the inclusion map itself.   

So when you put this, this arrow identity, if you do not put this one that diagram is commutative, 

if you put this one it  will be homotopy commutative. If you come from here to here and come 

from here to here, it is homotopy. Because this is homotopic to the identity, precisely the last thing 

it says--j composite f is homotopic to the inclusion map i.  

So let us prove them one by one. Some of them are  obvious. Namely, the first thing that  f hat 

composite i is f, we have already seen. What is f hat? Each point of Mf is a class-- ( x,t or bracket 

y.  Remember that means equivalence class  of elements from X × 𝕀 union Y.  On Y part, it takes 

bracket  y to itself. If it is (x , t), it is taken to fx, so it is well defined because whenever there is an 

identification, namely,  at X × 𝕀,  x × 1 is identified with fx only. So it makes sense. So it is an 

extension of f which is defined on X × 0. So first part we have already seen.  
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Secondly,   we have to define a homotopy here. So take G1 from X × 𝕀 × 𝕀 to Mf, and G2 from Y 

× 𝕀 to M defined as follows: G1(x, t, s) goes to  x , something.   x is as it is you see , everything is 

happening in 𝕀 × 𝕀. So that  `something’ is 1 - s times t + s--- it joins t and 1--- 1 - s time t + s times 

the constant 1--- that is the identity function and the constant function are being joined.  That is 

first one.  The second function G2 (y) , s is just y, --- ignores the s coordinate.  

These maps  together  induce a homotopy from Mf × 𝕀 to Mf.  On X × 𝕀,  when t =  1, it is identified 

with fx. If t is 1 this is just x , 1. And this is just y. So these maps fit together to define maps from 

Mf × 𝕀 to Mf.  Before we go down to the quotient spaces, G1 and G2 are easy to understand. On Mf 
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× 𝕀, it is  from identity of Mf to j composite r relative to Y.  On Y  always it is the  identity function.  

What is j composite r?  

Let just see that, what is this r I have got? A typo, this is not correct.  j composite f hat, it should  

instead of j composite r. That is not correct. Identity of Mf to j composite f hat relative to Y. 

 Now the proof of (c).   Mf union X × 𝕀 is a strong a deformation retract of an Mf × 𝕀. So what do 

you have to do? You have to do just same thing -- what  you have done.  

(Refer Slide Time: 10:41)  

 

I have to recall that the construction that we have done in the previous module where is it? Module 

20 or 19  whatever.  So let me go back to the formula (8) here all the way this one. This map will 

be  used again.   
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Exactly similar to that. So, H1 is from X × 𝕀× 𝕀× 𝕀 to Mf × 𝕀. Actually it is from Y × 𝕀× 𝕀 to Mf . 

H1(x, t, t″ x , S similar to what we have done in the case of arbitrary X. That is precisely what we 

are doing here exactly same way. S part is taken here, x part is undisturbed × 𝕀. H2 y, t′, t″is-- y 

remains as it is and we are ignoring t″ here 1 - t′.  

Taking the reverse of that, if you do this, just like the same, similar notation as in that one. All that 

you have to do is verify that they fit together, fitting together means what?  Y is a subspace of Mf. 

So on that part, you have to verify that wherever this, in this Y is instead of Mf here X × 𝕀 f X 

when X × 1 is identified in  Mf where it is like Y. So there also you have to verify what happens 

there.  

So then they agree as a function. So then continuity follows because all these, wherever they agree 

all those spaces are closed subspaces. So they fit together to  define a map H on Mf × 𝕀 × 𝕀, Mf is 

the quotient of  this part X × 𝕀 disjoint union Y × 𝕀 one more factor 𝕀 are also taken--- then the 

identification. You have to verify. So it gives you a map from Mf × 𝕀 × 𝕀 to Mf × 𝕀 which is a 

deformation retract of Mf × 𝕀 into Mf union X × 𝕀  

 Once you have these the proposition will tell you that the inclusion map of Mf into Mf × 𝕀 is a 

what, sorry,  inclusion (X) into Mf is a cofibration, so that is (d). (d) tells you that i is a cofibration. 

What is i? i is the inclusion map (X) into Mf. Finally, what is a (e)? (e) is j composite f is homotopic 

to i. j composite f =j composite f hat composite i.  

318



 Because f hat composite i is f.  Now you have  already shown that j composite f hat  is homotopic 

to identity of Mf. Therefore, the whole thing will be homotopic to identity composite to 𝕀, this is 

same thing as the inclusion. So (e) follows easily if we put these two things together, (a) and (b) 

together.  
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So this is the essence of   all this.  It may be difficult to remember. So, let us go through it once 

again.  What you have done? start with f any map, it is getting replaced by   the  inclusion map. 

This f is getting replaced by the inclusion map.   The inclusion map is homotopic to this one ---as 

if it is homotopic to f. It is not exactly homotopic to f because things are not taking place here, but 

inside here.  

So, j composite to f is homotopic to i that is the meaning of saying that f is replaced by i , inclusion 

map up to homopty. Instead of Y we have Mf, but what does it represent?  Mf and Y they are of 

the same homotopy type--they are homotopy equivalent to each other.   In fact, this is not an 

ordinary homotopy equivalence. This is a strong deformation retraction. Y is a strong deformation 

retract. Up to a strong deformation retract, this f becomes i.  

We cannot define an inverse of f here. But the map j plays the role of homotopy inverse, that is 

also seen. So f composite j,  mapped inside Mf,  that is homotopic i. So, in that sense an arbitrary 

continuous function has been replaced by an inclusion map into some other space. And what is 

this space? this is of homotopy type of the codomain Y.  Y is strong deformation retract, codomain 

is a strong deformation retract of new one.  

The new space contains the codomain also. So it is an enlargement of the  codomain of this map. 

f has some codomain Y. Now that Y we have enlarged and the enlargement  does not lose the 

homotopy information, I mean, homotopy information is not lost. So this is the gist of this theorem 

and essentially we use the construction of this number (8), namely, going back all the way,  of 
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taking 𝕀 × 𝕀 and constructing a strong deformation retract there.  That was the fundamental idea in 

all these things.  
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Thus the mapping cylinder is a device that enables us to replace an arbitrary map f from X to Y by 

an inclusion map, which is a cofibration, up to homotopy. Observe that Mf contains lots of copies 

of X and one copy of Y. X 𝕀 × 𝕀, so for each t,  X × t is there. Except at X × 1 there are no 

identifications. From (b) of the above theorem, we have that Y is a strong deformation retract of 

Mf. The mapping cone, there is a mapping cone construction, Cf is called the cofiber of this  

fibration. 

In the next section, we shall give a number of applications of the  mapping cylinder. So, to sum 

up, the hard work is somewhat over now. So, in next module, we will reap the harvest, lot of 

interesting applications will be there now for this. So that is all. We will not continue now, we will 

stop here. So let us take the next thing later. So there are some exercises here.   
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As usually I will just go through a few of them, but I am not giving you  any solutions  here. The 

first thing is, you should know all these things, these are all more or less point-set-topological 

stuffs.  

You begin with two points in the interior of the disc 𝔻n. There is a homeomorphism f from 𝔻n to 

𝔻n such that f(p)= q. p and q are both interior points.  On the boundary f is identity.  

The boundary is undisturbed,  any point p goes to any other point q. First prove this one for a 

closed interval a b,  a and b are fixed. Give me a homeomorphism which takes any point  inside a 

b to another point. And it must be homeomorphism. I think you will be able to do this. Then,  for 

all discs you must able to do this. For the general case,,  once you do it for the unit disc, it will be 

done for all the discs.    

322



(Refer Slide Time: 20:11)  

 

Next thing is about  how far are these convex subsets related to the standard convex set namely  a 

disc.  Let us look at that one with X be a convex polygon inside ℝ2 with n sides. This is n 

≥3. A convex polygon is like a triangle or a quadrilateral and so on. I 

am not assuming any regularity fro them,-- any convex polygon. So 

that X is homeomorphic to the cone over the boundary of X, What is 

boundary of X?  When you say a triangle, there can be   some confusion-

- is it  the `full’ triangle or the boundary triangle?  

So, here I mean by the convex polygon I mean the entire convex set, the whole thing. And the 

boundary consists of only sides of the polygon (not a convex set!) So, on the boundary, which is a 

topological space, you take the cone over that. Then you have to show that the cone is 

homeomorphic to the convex polygon itself. The full triangle is homeomorphic the cone over the 

triangle. So that is a first exercise here.  

Now choose any n distinct points, a1, a2 dot dot dot an,   on the standard circle 𝕊1. Now construct 

a homeomorphism f from the boundary of this polygon to 𝕊1, so that the vertices of X, all the n 

vertices are mapped into a1, a2, and here you will have to,  you are forced to take the a1, a2, an, in a 

particular order whichever way, suppose v1, v2 to vn are the vertices of the polygon written in a 

particular order but consecutively.   
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Then a1 to an must be also consecutive. You cannot shuffle them, you cannot separate them. So 

that is understood here. So  v1 should go to a1 v2 should go to a2 etc vn should go to an. And the 

entire thing must be a homeomorphism of the boundary of X to 𝕊1. Next construct a 

homeomorphism g from X to the entire disc  inside 𝕊1, together with 𝕊1, which extends the given 

f in (b). That must be an extension-- on the boundary, it must be your f and the entire thing must 

be a homeomorphism g.  

Do the same thing as in (b) and (c) with the right half disc G, three of the points on the boundary 

being 0 1,0 0, 0 - 1. So I am taking the half disc here inside 𝔻2, inside ℝ2. Instead of taking a 

convex polygon I am taking another kind of convex set, the half disc is also convex set.  

Its boundary consists of a line segment on the y axis namely - 1 to 1 and a half circle  on the right, 

right half disc you have taken. So take 0 1, 0 0, 0 - 1 these three points. Map them to three distinct 

points on the circle, construct the homeomorphism on the boundary. And then construct the 

homeomorphism of the half disc to the full disc. That is what you have to do in the (d)  
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Similarly, now this exercise (e).  Assume that n is greater than or equal to 4 now, at least 4. Let 

A1, A2, A3 be three consecutive vertices of  X. Let Y be the quotient space of X obtained by 

identifying the points of the edge A1A2 , with those of  A3A2, in that reverse order, - identify them 

by the rule: t times A2 + 1 times t times A1, that will lie on the edge A1A2, should be identified 

with to t times A2 + 1 - t times A3.  

In other words, A2 will remain as it is, a1 and a3 are getting identified. So this is the only 

identification the two edges are identified. So for all t between 0 and 1, we make this identification. 

Whatever Y you get out of the entire convex polygon X,  after this identification again is 

homeomorphic to 𝔻2.  For this, you are assuming (but don’t have  to assume) that there are more 

than three vertices.  
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So like this there are other  exercises  also here.   
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Then some for  the cones.  
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So later on, these are exercises  on loops and homotopies of  maps so on. So this is on the first part 

of the chapter.   
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But this one, we have already used, if X is Hausdorff space and the inclusion map is a cofibration 

then A is a closed subspace.  I have indicated the poof already. So you can just write down by 

memory if you have understood it or you have to work it out yourselves.  
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Solution of this also I have indicated namely,  a can be identified with homotopy classes of 

loops from  to X, I mean continuous functions from 𝕊1 to X, where 1 goes to a.  Homotopies  

here  keep the point  1 fixed  throughout the homotopy. So that is the meaning of 𝜋  . This 

result has been already used. So you write down a detailed proof of that one. 
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So now suppose you have that every map  is null homotopic,  defined on the circle, then  

is trivial. For each point x0 belonging to X.  What I am saying? Take any loop in X, suppose it is 

null homotopic. If any loop in X is null homotopic then 𝜋  is trivial for each point of X. 

No matter where it is. This should be true for all loops. So this is a straightforward application of 

this exercise. 
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So, suppose you have a path connected space. The set of  all homotopy classes i.e., without any 

base points, free homotopy classes is equal to the set of conjugacy classes of elements in 𝜋 

. 𝜋  is a group. In a group you know what is the meaning of conjugacy classes? 

That is what you have to show, that conjugacy classes are in one one correspondence with the  free 

homotopy classes of maps from 𝕊1 to X. Base points  are not fixed here. So that is the difference. 

From this you can deduce this theorem, and this exercise also.  
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This exercise, actually I have solved it in the theory part itself, roughly, I have given you sufficient 

hints. So this is easy to work out for. X is a path connected space. Then 𝜋  is abelian if 

and only if what happens? for each b inside X, and for any path  from a to b, the homomorphism 

, which is obtained by conjugating by the path ,    

 this map is the same-- for whatever 𝜏  is.  For all paths , 𝜏 is the same map-- same 

homomorphism, the same bijection whatever.   
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This is an exercise which will help you to prove that  in the comb space 1,0 is not a strong 

deformation retract. First prove this exercise 4.11. What does it say? Suppose some point x0 is a 

strong deformation retract, then for every open subset U(X) containing x0, there is another 

neighborhood V of x0 inside U, (there is a typo there) such that inclusion map V to U is null 

homotopic in U. V to U you can write a homotopy to a constant function that  is the conclusion -

starting with the  inclusion map to a constant function. That is null-homotopy. 

 If you use this cleverly then you can show that 0 1 is not a SDR of the comb space. No hand 

waving. For that I already told you what you have to use. The comb space is not locally path 

connected or locally connected at any point on the y axis. It fails to be locally path connected.  Use 

this exercise to  complete the proof of this SDR.   
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So let us stop here. Next time we will see many more results. So as I have told you,  hard work is 

more or less over for a while. Thank you. 
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