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Last time, remember this picture in which we showed that the union of the two segments here on 

the boundary of the square is a deformation, it is a strong deformation retract of the entire square 

𝕀 × 𝕀. Just reflect this picture along the y axis. What do you get? You will get - 1 × 𝕀 here, , 

the interval here, and 1 × 𝕀 here. As a subspace of  and it will be a strong deformation 

retract.  

There is no need to write down another proof here. Now imagine you are inside this is x- axis and 

this is y axis and take another third axis  horizontally in ℝ3, then along the y axis, instead of 

reflecting, now you rotate this picture. What do you get? You will get the  disc here of radius 1× 𝕀 

strongly deformation retracting to the tub, namely 𝕊1 × 𝕀 union the bottom disc.  

Do you follow this geometric argument? Once I have written down this one, I do not have  to write 

formulas for the other two-- it is obvious. So today, we are going to make use of such ideas and 

do a lot of more generalizations or constructing deformation retracts.   
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So that is the topic today, generalized  constructions. Think of the interval, close interval 0 to 1 as 

a cone over 1. What is a cone over 1? What is a cone over anything? By definition it is X × 𝕀 and 

then X × 0 being identified to a single point. So if X is singleton 1. What is X × 𝕀? It is a interval. 

There is no further identification because endpoint is just a singleton 1 only. So think of this  as a 

cone or, sorry interval as a cone over  singleton 1.  

Then the construction above can be generalized to any space X instead of the singleton 1. So what 

do you do? you use polar coordinates for the cone over X. So,  let us look at this map X × 𝕀 × 𝕀 × 

𝕀 to X × 𝕀× 𝕀.  

 

See in the earlier case when X was singleton, we had this homotopy capital 𝕊 from 𝕀× 𝕀 × 𝕀 to 𝕀× 

𝕀. Which is a strong deformation retract. OS, the singleton space $X$ was not written.  But now I 

want here, write the whole space X so you have to write X × all that. Now the X Factor is a dummy. 

What we are interested in is the homotopy  capital 𝕊 which was defined last time from 𝕀 × 𝕀 × 𝕀 to 

𝕀 × 𝕀. So therefore let us define H  H(x, t, t′, t″) going to  x as it is, comma 𝕊  of the three variables   

t, t′, t″.  
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𝕊 is obtained by stereographic projection from 0,. So this was the map. So what will be the image, 

namely when t″=1. All these you have to see.  

(Refer Slide Time: 5:47)  

 

 

 

Let us fix some notation.  Round bracket (x, a , b) round bracket etcetera to denote the image of 

(x, t) or (x, a, b) etcetera inside the product space. Under the quotient maps where quotient maps 

correspond to cone construction. There is one cone quotient map from X × 𝕀 to CX. Then another 

one from  X ×𝕀 × 𝕀 to CX × 𝕀. Let us have one uniform notation instead of too many notations.  
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Whenever I write round brackets they are in the original product space, and  whenever I write 

square brackets they are corresponding to quotient space, CX × 𝕀. Starting with a map from X × 𝕀 

× 𝕀 × 𝕀, the last two factors are not affected at all. But X × 𝕀, on this factor, there will be a quotient 

map to  CX, wherein X × 0 has been identified to a single point.  

 

Now, the point of this one is when the first coordinate here, this t is 0, then this entire map  

S(0 t, t′, t″) is the  single point 0. Therefore it will  factor down from the quotient space to, the 

quotient space here, CX × 𝕀,  using the property of quotient spaces.  You see that is the whole idea 

here. So, under the  quotient map, q × identity,  the function H respects equivalence relations 

defined by a cone, because the t coordinate of S(0 t, t′, t″) is always 0. So actually H( x , something 

× something × something goes to x × 0 × something, so gets  collapsed to 0 × something.   

The t coordinate of this part is always 0. So here a t coordinate going to 0. So is this fine. Hence, 

there is a well-defined  quotient map, I mean the induced map, or induced map H bar from CX × 

𝕀× 𝕀 to CX × 𝕀. What is the formula? H bar of this equivalence class. H (x t, t′, t″) has the first 

coordinate as x ,  S(t, t′, t″).  So,  first of all,  you need to verify why H bar is well defined.  

Because when t is 0, there may be different x  here. But when t is 0,  look the image,   x , some 

number but that is also 0. Therefore, this is well defined function on CX × 𝕀. This is two coordinates 

here.  S(t, t′, t″) may look like some 𝛼(a, b) 𝛽 where a, b are elements of . When t is 0, 𝛼a is always 

0. Therefore, H bar is well define function.  That is what I wanted to say.  

Instead of writing S of this one into different formula and so on you just write in this way. So you 

have to just check this S is the function that we have worked last time. So let look at this one again.    
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When t is 0, so what happens to the first coordinate here? That is why I have written down fully in 

terms of t, t′, and t″. If I write like this, it is not clear what happens here. When t is 0 this is the 

formula which is valid, other one will not occur at all. Never t′ > 2.  So use this one,-- t′ less than 

equal to 2,  is possible, so look at this formula when t is 0,   the first coordinate is 0.   
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A t here, there is a t here too, so this part is also 0. The first coordinate here is 0, the second 

coordinate is   1 -t″times  t′, is independent of t, that does not matter. This part is 0 is all that I need. 

So we have a map like this, now you can verify that this actually a homotopy of the identity map,  

ie.,  when this last coordinate t″ is  0.  And  when I put  t″ =1, it takes values inside the tub,  all 

that you can verify exactly same way as in the case 𝕊. The x- part has no role to play here.  

 (Refer Slide Time: 11:49) 

 

So it can be directly verify that bar H is a continuous map also. But you do not need to do that 

because of the quotient space theory. The continuity can be deduced because we have a formula 

there. Alternatively, we can use theorem 3.4 which says that the  product of quotients is a quotient. 

Product of the quotients, here  the second factor is actually  identity. Why it is a quotient map? 

because  𝕀× 𝕀 is compact.  

So in particular it is locally compact, we have proved that for locally compact space X, and q from 

Y to Z is a quotient map,  then X × Z to Y × Z, q × identity is also a quotient map. If you use that 

theorem,  continuity of H bar is obvious--- you do not have to verify. But if you  do not want to 

use that theorem, you can directly verify this by looking at the formula: at each part you just see 

that it is given by a certain formula, projection maps x , something, that something is continuous.  

So that is what it is. Too show that CX × 𝕀 × 𝕀 is a quotient topology you can use this theorem and 

then you are done.  
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So the conclusion is that for any topological space X, CX × 0 union X × 𝕀, is a strong deformation 

retract of CX × 𝕀, where we identify X with it image in CX, viz., x goes to (x, 1).   

This is the starting point, the bottom line segment and a vertical segment  parallel to the y-axis. 

This is a strong deformation retract of 𝕀 × 𝕀 --- that was the starting point. But instead of that  𝕀  I 

am replacing the single point 1 , 0 by X. Two such examples I gave-- one is got by reflection, but  

the whole idea is that  the interval   can be thought as the cone over 𝕊0  the second one is  

cone over 𝕊1 is got by rotating the whole picture along the y axis.  

Why bother? That is all geometrically you can do. But you can do this by just simple argument. 

Just  parameterise over X, you get a cone over X. So the bottom CX × 0 and X × 𝕀, that is a 

subspace of CX × 𝕀 which is a strong deformation retract of CX × 𝕀.   
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So this figure I have already shown you. Now I am drawing those two figures you see the reflection 

here of the earlier picture and this is obtained  by rotating. So what do you have got here is now a 

bathtub. The solid thing, whole this,  is like a piece of ice, the ice melts down, and   only the 

container is left out.  

 

There will be a number of applications now, one by one.  

(Refer Slide Time: 15:59)  
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Let A be any closed subspace of X. Then the pair X, A as homotopy extension property with 

respect to every space,  if the subspace Z = A × 𝕀. union X × 0 is a retract of X × 𝕀.. What is the 

meaning of  homotopy extension property with respect to every space?  

That is the inclusion map is a cofibration. So this is what-- the inclusion map is a cofibration if and 

only if A ×𝕀  union X × 0 is retract of X × 𝕀. So this is the direct application to homotopy theory 

of that simple construction of SDR we have done.  

(Refer Slide Time: 17:01)  

 

This a picture, bottom thing is X, X × 0.  In this picture A is the triangle, is a subspace of X there, 

A × 𝕀 is standing here. You have to take A × 𝕀 union  the bottom X, X × 0, this is a strong 

deformation retract of the entire X × 𝕀. The hypothesis is that A to X, the inclusion must be a 

cofibration. The stronger conclusion is that it is  `if and only if’. That is a fantastic conclusion.  

Why? Because to verify something is cofibration, you have to verify something   for every space, 

every map. Verifying any  property for all spaces is an impossible task. Here you have to only 

verify that this particular subspace, whether it is a strong deformation retract of X × 𝕀 or not; over. 

So this is going to be extremely useful theorem. Looks like  small results. But these are going to 

build up the whole theory, what is called a homotopy theory.   
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So let us work out. How is it done?  First part, suppose you have the deformation retract and  we 

want to show that A to X is cofibration. Cofibration means what? So let us assume that there is a 

retraction r from X × 𝕀  to Z this is just a retract, sorry, it is not even a strong deformation retract, 

suppose you have just retract. Retract means what? Restricted to Z, it is identity. It is continuous 

function from the whole space X × 𝕀  to subspace to Z.  

What is Z? Z is, I introduce this notation namely, A × 𝕀  union X × 0.  Suppose there is a retraction. 

Now suppose there is a homotopy extension data as in definition 1.4. What does this mean? This 
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means that you have a map F from A × 𝕀 to  Y the restriction of it to Across 0  can be extended to 

a map on X × 0.  Then I want to have an extension on the entire of X × 𝕀,  that is a  homotopy.   

So suppose you have such a homotopy data. So, I have obtained from  it  a map 𝜃 which is the 

union of these two things, namely, 𝜃 restricted to A × 𝕀 is the homotopy F and  𝜃 restricted to X × 

0 is the map g which is an  extension of F on A × 0.  So, define  𝜃from Z to Y by putting these 

together,   namely restriction to A × 𝕀 is F and on X × 0  it  is g.   So what you have is a map 𝜃 

from Z to Y.  

Then there is a map from X × 𝕀 to Z which is r. take the composite, G equal to 𝜃composite r. All 

that I want to say is G is the required homotopy extension. Because r is identity on this part, then 

you take r composite 𝜃,  when you restrict it to X × 0, it will be the required map g, similarly on 

A × 𝕀. That is all. And it is an extension it is defined on whole  of X × 𝕀. So this comes as  if by  a 

magic. Now.  this retraction we want to construct if the  inclusion map is a cofibration-- that is the 

converse. 

(Refer Slide Time: 22:18)  
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Suppose the pair (X,A) has homotopy extension property with respect to every space. Every space 

Y. In this case now, I take Y to be Z itself and F, and g be the corresponding inclusion maps. What 

is F, A × 𝕀 to Z it is the inclusion. What is g,  X × 0 to Z is the inclusion. So that is the data. So 

with this data there will be a capital G from X × 𝕀 to Z, it is a continuous function which extends 

this one that just means that on Z, it must be identity.  

So it is a retraction. So that is the statement. It says that starting with A any closed subspace of X, 

then being a cofibration or Z being retract-- these two things are equivalent. Inclusion map is 
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cofibration, or this A × 𝕀 union X cross 0 is a retract,-- these two are equivalent. Where did we use 

that A as closed subspace? Why do we have that hypothesis?  

This one I defined, it’s , by patching  two different functions. On A × 𝕀 , it is F, so continuous. 

Restricted to X × 0, it is g, so continuous. these are hypothesis. But why 𝜃  is continuous on Z?  

On the intersection  A × 0, this F agrees with g restricted to A × 0 because g is an extension of that 

A × 0. So,   as a function, 𝜃  is well defined. But why it is continuous?  

You need some hypothesis namely, if A is closed, then the intersection in A × 0 here also  will be 

a closed subspace. Look at A × 𝕀 and X × 0, what is the intersection? it is A × 0. That must be a 

closed subspace. This is the same thing as A must be a closed subspace of X. So the hypothesis is 

required there, to say that  𝜃 is continuous.  

It is not a very costly hypothesis because, finally what you get is the converse.   Namely A to X is 

a cofibration then what  happens, Z becomes  a close subspace of X  × 𝕀,  if X is Hausdorff. Any 

retract of a Hausdorff space is closed, that is what we know.  

If Z is closed, then A cross 0 will be closed subspace, it is very easy because you  just intersect it 

with X × 0, sorry Z intersection  X × t say,  X × 1. That is  actually is A × 1. A × one is closed is   

the same thing as A is closed in X.  So under Hausdorffness, the closeness of A is a must. So we 

are not assuming too much.  

(Refer Slide Time: 26:18)  
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So I have told you already that this proposal comes extremely handy in determining whether the 

inclusion map is a cofibration or not. It reduces the practically impossible task of verifying the 

homotopy extension property with respect to every space to just one a task of checking whether 

the subspace X × 0 union A × 𝕀 is a retract or not. This itself has many big applications. 

(Refer Slide Time 26:51)  

 

So let us take a look at some of these applications now. If the inclusion map is a cofibration, then 

for any space Z,  the inclusion map Z × A to Z × X is also a cofibration. So Z × A to Z × X what 

is the map, it is the inclusion map again because A to X is an inclusion map. How do you do that? 

305



 

 

Of course, here all I have this for A, I assume that is A is a closed subspace now. Because that is 

used. To apply that theorem you need a closed subspace.  

So why is it a cofibration? I have to just verify that, Z × A × I union  Z × X × 0  is a retract of  Z 

cross X × 𝕀. From the hypotheses that for X × 𝕀  the corresponding things are true. So everywhere 

you just take Z ×... So this is very straightforward.   
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This what I have done with a retract where X × 𝕀 to X × 0 union A × 𝕀.  R( z ,  x , t ) keeps z as it 

is. Look at  the second factor, r ( x, t). Just taking identity cross r, .  That will give you the 

corresponding retraction for the product.  

(Refer Slide Time: 28:55)  
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Next  next corollary is also as easy. Take any topological space, and  inclusion map of X,  x maps 

to x × 1, of X into CX. Remember in the cone, X was identified with X × 1 as a subspace. So now 

I am thinking of X as  a subspace of the cone. That inclusion map is always a cofibration. At least 

here, you do not have to assume something is closed etc.  Automatically X is a closed of space of 

the cone. So now,  X to CX itself is a cofibration, the  inclusion map is a cofibration.   

Can you see  how to get this corollary?  Just like in this case of product, now we can take the cone 

over that one.  In the previous example you got a product. You can parameterize once you have 

this r.  Parameterize by any other another factor. So I will leave it to you to think about these 

things. Maybe unless you write down something by yourself you may not realize it fully I think.   

CX the cone over X contains the base space X, as X × 1, the inclusion map will be a cofibration.  

Verify this is the statement. 

(Refer Slide Time: 30:47)  

 

In particular, we have seen that 1 is the bottom of the cone over one which is the interval 0 1. The 

singleton 1 inclusion into the interval is a cofibration. You can directly prove this.  Also but, 

actually the first picture itself proves it at the starting point. But now I have something more here, 

a corollary.  Take any point in between also. This is also a cofibration. I tell you how to get it.  

Take reflection,   and move the   center  and so on.  
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So this is the trick.  You reflect it on the other side. So one is  a retract, you get a retract  on the 

other side. So instead of an end two end points you will get a central one an edge here. So above 

construction can be used to get a picture for this one also. Same method of construction can be 

used to prove that any inclusion map of singleton into 𝕀  is a cofibration. Go back to that theorem 

that proposition and try to prove that retract is possible, that is all.  

(Refer Slide Time: 32:28)  
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Once we have this, for any space Z and any point t in 𝕀 the inclusion of map Z × t into Z  × 𝕀 is a 

cofibration. This is a direct consequence of  two of the previous theorems, first we can use this 

one, and then we can use this product theorem,  combine these two corollaries, you get this 

corollary. For any point t,  Z × t inclusion into Z across 𝕀 is a cofibration. So, let’s stop here and 

take up further applications in the next module.  Thank you.   
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