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So, with a lot of background from Topology, now we return back to our homotopy theory. Earlier 

we have defined the notion of homotopy and then while dealing with loops and fundamental group, 
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we modified it. Path homotopy was defined as homotopy which leaves the end points fixed; this 

idea will now be generalized completely.  

Now, in order to study homotopy properties of spaces, we need to work out from smaller pieces 

of the space to larger chunks of the space. This demands that whatever good work we have done, 

whatever information we have collected on smaller pieces is not lost, when we move to larger 

spaces. So, the notion of homotopy needs to be strengthened by allowing us to exercise control 

over the smaller pieces.  

And that is precisely what leads us to what is called a relative homotopy; namely the homotopies 

which do not change on whatever smaller piece is nice already. There, we have to keep the 

functions as they are, do not change them. So, this section will make  only a small beginning. 

Yesterday only a few definitions and observations, even those thing have to be developed step by 

step. 
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Start with a subset A of X, where X is a topological space; and two functions X to Y, which are 

continuous functions, such that on A they agree, f a equal to g a, for every a in A. So, on a smaller 

subset, the functions are the same. Then we say f is homotopic to g relative to A, if there is a 

homotopy H from f to g such that H of a, t is f a for every a in A.  
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We write this as f  is homotopic to g, without  any equality sign there,  relative to A; the simplest 

notation for most useful concept. If A is empty then it is the standard original homotopy that we 

had.  No controls. If X is the interval [0 , 1]  and A is 0 and 1, this is precisely the path homotopy 

that we have.  

So, the relative homotopy that we have taken  is a perfect generalization of the older concepts. So, 

all the properties that we have, all the deductions that we have done for older things; they are not 

lost by this new definition, you do not have to recheck them again; this is one important thing you 

have to understand. 
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Now, we  have defined what is homotopy between X to Y relative to some subspace; we can talk 

about homotopies of pairs. Here, you take a pair X, A--- means A is subspace of X; and Y should 

be another topological space, and B should be here instead of A, i.e.,  B is the subspace of Y. 

Nothing wrong if A equals B but this will be too restrictive that the same A should be  the subspace 

of both X and Y. We can take both cases.  

Generally,  by pair of topological spaces, we mean as a topological space; the second entry here 

must be a subspace. That is all. So, such a pair has same homotopy type, if there exist functions  f 

from X, A to Y, B, g from Y, B to X, A, i.e.,  such that f of A goes inside B , g of B goes inside A 

and B and g composite f is homotopic to identity of X  relative to A; and f composite g is homotopic 

to identity of Y relative to B. 
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So, we keep writing relative to A specifically, if I just write equivalence it may  conflicts with the 

older notation. So, this g composite f is from relative to B it should be. So, it is easily checked that 

the above relation is an equivalence relation among all topological pairs X, A, where A is fixed. If 

you take all topological pairs X, A; here you take also Y, A only; topological pairs with A has to 

be fixed here.  

In other words, A to B you can take a homeomorphism.  That is the consequence of this one. If   g 

composite f is homotopic to identity X  relative to  A, this means g composite f is restricted to A 

is just identity map of A.  Therefore, g and f are inverses of each other when you restricted to A or 

B. So they will be homeomorphic. A and B are homeomorphic is a consequence. and that is one 

reason why I have written both  A here  instead of B.  

That is why there is nothing wrong, if in the definition you take A and  B arbitrary. For topological 

pairs, when we talking about their  are equivalence, then you fixed A and look at all topological 

spaces which contain A as subspace. Then you have this  equivalence relation, whether they are 

homotopy equivalent to each other with respect to A, i.e., relative to A. So, that  will be an 

equivalence relation; and the classes are called homotopy types. 
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I have already told you what a retraction is, but let us recall:  A retraction r is a continuous function 

from X to A, a subspace, such that on the subspace it is identity, r a equal to a for every a in A. If 
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such a retraction exists then we call A is a retract of X; retraction is an action, it is the function. 

Retract is the result, A is a retract of X.  

 

A function f from X to X which is homotopic to identity is called  a deformation of X. Any function 

which is homotopic to identity will be called deformation of X. Often some people call the 

homotopy itself  a deformation; so that is an action of the deforming. From identity map, you have 

taken some other function. If f is a homeomorphism, (we are not bothered so much about 

homeomorphisms,)  maybe f of X is smaller than X, but it is homotopic to identity map, then this 

is called a deformation.  

So, everything is taking place inside X, so that is important; so, any map which  is homotopic to 

identity is called a deformation of X.   

Suppose now  r is a retraction and it is homotopic to identity; note that retraction is a map from X 

to A, but A is a subspace of X,  therefore, we can view r as an from X to x is space. Then we can 

talk about whether r is homotopic to identity. If that is the case,  r is retraction and is homotopic to 

identity; then it is called a deformation retraction.  

A retraction and  it is a homotopic to identity, homotopy is taking place inside X;  image of r is A. 

But, identity map is there from X to X, so it moves slowly and enters inside A; so, that is the 

meaning of deformation retraction. Again if such a map exists, then A will be called a deformation 

retract of X; so you have deformation retraction and deformation retract; retraction and retract. 

Retract is subspace, and  deformation retract is a subspace; whereas deformation retraction is the 

action the homotopy, the map itself.  
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If the homotopy from identity to r in the previous definition, namely, when you defined 

deformation retraction, if that homotopy is relative to A, the points of A are not moved, then this 

is called a strong deformation retraction; and A is called strong deformation retract. Finally, one 

more definition, when the inclusion map A to X is a homotopy equivalence,  (say,  treat A as some 

other space, then you know that we have defined homotopy equivalence between A and X; but, if 

it is an inclusion map itself is a homotopic equivalence) then we say A is a weak deformation 

retract. Inclusion map has a homotopy inverse  means there is a map r X to A, it may not be retract 

r composite i is  homotopic to identity. That is why it is called a weak deformation retract.  

 

One thing is the name should tell you that strong deformation retract implies deformation retract; 

it is obvious because we put extra condition in a strong deformation retract. During the homotopy, 

the entire homotopy should be identity on the subspace A. Deformation retract is what retraction 

map A is homotopy to identity, automatically tells you that inclusion map is a homotopy 

equivalence; its homotopy inverse is r. The weak deformation retract does not have an inverse, 

which is a retraction. So,  somehow it is equivalence. Its inverse, homotopy inverse from X to A 

may not be a retraction; therefore, SDR implies DR implies WDR.  

Strong deformation retract implies deformation retract implies weak deformation retract. The 

problem here is: if you are referring to various books, they may differ in the definitions. So take 
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care; so what are the definitions, first thing to check. There are different meanings, the same words 

may mean different things or different orders. 
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Let us examine some examples. Simple examples familiar to us, first and then later on, we will try 

to do more and more complicated ones. Take any convex subspace X of  then every point in X 

is a strong deformation retract of X. While proving that convex subspace is  contractible, precisely 

what  are we perceiving. What was the homotopy? ;  whatever the selected 

point point  is.   

So, let x naught   be  a point in X; the homotopy is  t times x, t 1 minus t times x naught. That is 

the strong homotopy; it will not move the point x naught at all. Everything is joint to this one; so 

this follows from the observations that parameterization of the line segment is continuous in terms 

of the end points.  

Or we can use the map other way around:  x, t going to 1 minus t times x plus t times x naught. 

This shows that when t equal to 0, it is identity of X,  x goes to x,  when t equal to 1, it is x goes to 

x naught.  x naught comma t if you take, it is always x naught; no mater what t is; that is  the 

meaning of saying x naught never moves.  

Therefore, this homotopy is already relative to x naught. Therefore, what you have got is the 

constant map x naught, all of x going to x naught; that is a retraction, obviously. And it is 
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homotopic to identity, therefore x naught is a strong deformation retract of X. Identity is homotopic 

to the constant map. Id of X x  homotopic to C x naught; and this homotopy is relative to x naught. 

(Refer Slide Time: 17:37) 

 

Here is a picture  displayed. Suppose you have a convex set like this and take any point. All the 

points are coming here, this point  is not moving. At the end , the result will be a constant map; so 

this is the picture of a strong deformation retract. You take any other point and then join, this is 

actually true of a star-shaped set also, with the apex as x naught; that x naught will be what? A 

strong deformation retract of the whole space. Whenever, a space is star-shaped  at a point, viz., 

the apex point, then that is  is a strong deformation retract.  
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Another remark here for any space X, the subspace X cross 0 is a strong deformation retract of X 

cross I. Along these intervals for each point, I can just push the whole   to .  There 

is nothing special about  either, you take ,  then push the entire of interval at  

each point x of X,  to the point .  

So, this easy to see that X cross any t, the inclusion of X inside X cross I, is a strong deformation 

retract of the X cross I. So, more generally take any contractible space Y, then X cross y, where y 

is a point of Y, is a subspace of X cross capital  Y. And if Y is contractible, then X cross little y 

will be a strong deformation retract of X cross  Y. The deformation retract of Y, the homotopy can 

be used to prove this one, without moving the points of x; x comma whatever point. Maybe you 

can generalize this one even further.  
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Now, let us workout another familiar example. To begin with, once  again we start with   

So, I say that the circle, the unit circle is a strong deformation retract of  The origin you 

have to throw away. How do you do that? Once again the convexity, kind of convexity, whatever, 

this is not exactly convexity, `convexity about  is what is needed,   namely,  joining works 

namely,  makes sense.   

Take any x inside    Take a real number  H of x, t, I am defining H. x is a non-zero 

vector. So, I can divide by its norm, the new norm is 1, I get a unit vector. So, that is the map from  

   Now I am joining that function x by norm x to the identity map of X. 1 

minus t times x plus t times x norm x. Putting t equal to 0 this is identity of X,  putting t equal to 

1, it is the function which take x to x by norm x, which  is a retraction. If it is a unit vector already, 

x by norm x is equal to x. So, it is a retraction and it is homotopic to identity, therefore this is a 

deformation retraction. During the homotopy if x is already of norm 1; then dividing by x has no 

effect. 1 minus t times x plus t times x is x; so no point of S1 moves during the homotopy. 

So, this is a relative homotopy, therefore it is strong deformation retraction. Now, the same 

argument will work even if you take not the whole of C minus 0, but some kind of an  annular 

regions and so on, like you can take just all the vectors of length bigger than half, and less than 3 
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by 2; so, it is an annulus. You should not include 0. Not only that now instead of  and  this 

whole thing generalizes exactly ditto to  and . Is that clear? 

(Refer Slide Time: 23:42) 

 

Not only that. What we can do is why 0 itself, you can take any disc, you can take a sphere centered 

at any other point. Then you have to just translate the whole thing, you choose your coordinates 

so that  the center of that sphere is 0; so same arguments will work.  

 

Not only that you do not have to even throw away the center; suppose you throw away any point 

inside the sphere, inside the disc, the interior of the disc. Then Rn minus that point  can be push it 

back to the sphere; the sphere will be a strong deformation retract of Rn minus that point. So, you 

should try to see all these variations of this theme; but this is the simplest theme. But, this can be 

modify to get many other easy examples.  
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Less obvious is the following. Let us now look at  minus 1 plus 1 cross minus 1 plus 1, D1 cross 

D1, the square. Now, you throw away the origin 0, 0; so that is my X. I want to say that the 

boundary of the square is a strong deformation retract of this X.  What I have done? I have taken 

the square, then I have thrown away the centre.  This space  can be pushed out, or you can say the 

boundary of this one will be a strong deformation retract of entire space; there are many ways to 

do this.  

Instead of the circle I have a square now. The only difficulty is -- geometrically it is very easy-- 

we have to just push the whole thing, which just means that you are taking stereographic projection. 

But, writing down a formula is not that simple as in the case of the round sphere; geometric idea 

is the same. So, I will give you one  simple solution here, you are welcome to do whatever you 

like,  different types of  maps.  
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This is the simplest solution. Because the square has four corners, so I divide  the whole thing into 

four equal parts, the four triangles. Then for each triangle I can write it down a simple formula. 

On the intersection of two nearby triangles namely on this line, the two formulas will agree. The 

two formulas will agree here, they will agree here, they will agree here and so on. So, they will 

give you one single continuous deformation, a homotopy from this entire  square minus the center 

point here, to the boundary. During this homotopy, the boundary will not move. 

(Refer Slide Time: 27:24) 

 

276



 

So then, let us write down formula, so here I have written down the formula. For each triangle, 

you have to put a different formula here. For example, x coordinate is 1, y coordinate is changing; 

the first formula is for this triangle. So, take any y here x coordinate is 1, y coordinate is changing; 

send it to y by x, so that is the formula, send it to y by x. X is not 0 because x is 0 here, x is half 

two one here; so I can divide y by x.  

When x is 1, it is y the identity map; so those are the projections here. So, other thing you can work 

out, once you have written r, which is a retraction. The homotopy we can write down in a single 

formula; take the retraction and the identity and join them. Writing down the retraction itself will 

be truncated here; after that there is one single formula like x by norm x.  
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So, here are a few remarks, every singleton subspace of a space is a retract; the retraction being  

the constant map at that point. But, deformation retract, weak deformation retract, they are the 

homotopic concept; they are not always true. If X is a Hausdorff space, and if A is a subspace 

which is a retract; then A must be a closed subspace.  

So, this is one of the reasons why in constucting adjuction space, we assumed the subspace, on 

which the adjunction is taking place be closed. Yesterday one of you asked why do you want to 

assume that it is  closed? This is one of the reason.  Thus, in a Hausdorff space subsets which are 

not closed, they are not retracts; very easy to get  examples which are not retracts.  
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Note that,  if A is a deformation retract of X, then the inclusion map is a homotopy equivalence, 

this I have already told you. The retraction r as above is its homotopy inverse. In this terminology, 

to say that X is contractible is equivalent to say that every singleton subspace of X is a deformation 

retract. 

In the convex set, it is actually a strong deformation retract, this is what we have shown; but, that 

is not necessary in general.  If you take an arbitrary contractible space, every point is a deformation 

retract; so that is so,  more or less from the definition. But, if you want to have strong deformation 

retract that may not be true; so I will show you an example and that will be the end of today’s 

lecture.  
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So, the combspace is an example, which is just to warn you that you have to be careful with the 

definitions here. So, what it is this combspace? It is the subspace of  I cross I, the square; consisting 

of the line y equals  0. That means the x axis is there,  or x eqauls 0, the y axis is there; or x equals 

one by n, y could be anything. 1, 1 by 2, 1 by 3, 1 by 4 and so on; so those are the teeth of the 

comb. So, there are infinitely many teeth for this comb, and they are all clustering, they are coming 

closer and closer; at the tooth  x equal to 0. So, this is the picture of the combspace. 
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So, in the usual topology what happens? Around this point, around  0 , 0, and along the y axis is 

here, the topology of this space is -- it is not locally connected, not locally path connected and so 

on; now, that creates the problem.  

First, you can push the whole thing down to the x axis; once you have pushed that, then you can 

push the whole thing to whichever point you want along the x axis. So, that shows that every point 

on the x axis is a strong deformation retract, without moving that point. I repeat.  I push everything 

down to   first,    then everything down to 0 along the  x axis and then all these points 

pushed up to any other point on the y-axis.  So, each point on the x axis is a Strong deformation 

retract of this one. But,  points on this line, namely the y axis; other then 0, none of these points is 

a strong deformation retract.  

You can get a homotopy to that point because every constant function is homotopic to identity 

here; because this is a contractible space. But, the homotopy will not be identity on that point; the 

point itself has to move all the way to the x axis and then comeback. So, this is because of local 

nature here, the topology is complicated; this is not locally path connected. For a  rigorous proof 

you have to work harder.  That is an exercise. Thank you. 
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