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So, welcome to module 16. The topic today is the Quotient Constructions which are Typical in 

Algebraic Topology. So, let us begin with the so called cone construction. The subspace of ℝ3 

which is given by the equation x2+y2= r2; no condition on z; is a vertical cylinder of radius r, centre 

is at  the origin and axis will be the z axis. So, this is a model for what we call infinite cylinder. 

You can restrict the coordinate z say - 5 to + 5, then it will be a cylinder of height 10. So,  z axis 

can be restricted to some extent that is also called a cylinder. 

So, topologically what is this?   nothing but 𝕊1 cross an interval. That interval could be  of infinite 

length, or finite length, closed  or open interval; all these things are called cylinders. 𝕊1×J; so these 

are actually called circular cylinders in physics.  
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So, we will generalize this concept. You can call any space cross an interval as a cylinder; and this  

cylinder has X as the base instead of the circle.  X a topological space cross interval 0, 1; you can 

think of this as a cylinder. Now, this kind of generalization that we are going to do for what is 

known in layman’s language or in physics, the usual definition of a cone. So, in algebraic topology 

we define the cone based on any topological space X. What we do? Take X ×𝕀--- you can take any 

interval instead of I, but let us standardized to unit interval. Take  X ×𝕀 and then identify (x,0) with 

(y,0), (x,t)  with (x,t) for all t ≠ 0.  

What is happening here?  all become single point.  Other  (x,t) 

remain (x,t),  no identifications, where t ≠ 0. So, when t = 0, all (x,0) is 

identified with (y,0), for every x, y in X. So, this is the space. For t ≠ 0, 

the only identification is with itself, there is no identification; (x,t) 

is (x,t). But, on the base namely (x,0) in X × 𝕀, every point you identify with every 

other point; so, the entire  is identified to a single point. 

So, this quotient space is called the cone over X; the point namely, the entire X × 0 which identified 

to a single point, that point   is called the vertex of the cone or apex of the cone. So, you can just 

denote it  simply by star. The space X itself can then be identified with the image of X × 1 on the 

top in the  quotient space. And this is then referred to as the base of the cone. To get an idea of a 
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cone,  you may always think of X as 𝕊1, the circle.  Instead of circle, it could be an ellipse, it could 

be  just be a curve and then you can talk about the cone over the curve. So, this is what this 

generalization is about. 

So, the base of the cone is: starting with topological space X, that is the  base; but then that will a 

subspace of the cone via several ways. But, I will be taking it in  one particular way,  namely,  x 

goes to (x ,1). 
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So, here is a picture which starts with X × 0, and then the  bottom X × 0 is completely identified 

to a single point; whereas, X × 1  remains as a copy of  the original X here. In fact, you could have 

put X cross half here that will be also a copy of X  here. In the  picture it will be of different size, 

but it is homeomorphic to X-- all X × t, t ≠ 0, will be homeomorphic to X itself, 

X going to (x,t). This cone construction is very fundamental in 

homotopy theory; we will see why is it  so important.  
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So, for an arbitrary point of this cone over X see this is the notation.  A point in the product  is 

represented in the form (x,t),  with curly bracket usual---usual parenthesis.   Now, we have  put 

square brackets  on (x,t), for some x belong to X and t belongs to 𝕀. Normally, square brackets 

denote the equivalence classes. Here  the representation being unique if t ≠ 0. But, for t = 0, any 

(x,0) will represent the same point. So, (x,0) will represent the vertex star for all x.  

 

Though CX may not have any linear structure as such, though it is not a vector space, but 

something nice happens, namely, it makes sense to talk about line segments through any point 

(x ,t) of CX and star. Passing through star, there are lines; what are they? Namely the image of 

little .  

So, that whole thing image of X × 𝕀 is  homeomorphic to 𝕀 itself  for each x; t going to (x ,t), t give 

you an embedding of the interval 𝕀, inside  and then to  again into  CX. So, from star, you 

can go to any other point of x, t by a line segment; all the points between star and (x,t) are  there; 

you take  s going to  (x,st). When s is 0, it will be the star; when s is 1, it will be your point (x,t). 

Thus the  entire cone is star-shaped in this sense-- the star as its apex. Recall  that   we have defined 

apex for any star-shaped set earlier.  Here also we call it an apex. 
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We call it a vertex also;--- vertex of the cone.  that terminology is also used.  Consider the map 

(x,t),  s going to x(st);-- that map here defines a homotopy of the constant map star. When s is 0, 

it is the constant map; and for s is 1, it is the identity map. So, in particular this  shows that  CX is 

contractible; of course you do not need this proof. Because once something is star-shaped,  we 

know that it is contractible. But, that was in a vector space, so you better see what is the meaning 

of this here. Here too it is  similar.  Thus cones are always contractible irrespective of what the 

original base space is. 

Suppose you take  X as just two point space, a discrete space; what is the cone over X? It will be 

just union of two lines joined at one single point. Because, two points space  cross 𝕀 is the disjoint 

union of two lines;  two copies of 𝕀, but one at of the point namely at 0, both the points will be 

identified; so it will be again a line, so it is contractible. X here, which has two points  is not even 

connected. 
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So, given any map f from X to Y, we can talk about the cone of f; namely the map corresponding 

to, the  map induced from CX to CY. It is a natural way to get a map on  X × 𝕀 to Y × 𝕀. Namely, 

f of  (x,t) goes to (f x, t), i.e., f × identity. But, then you can pass down to the quotients; so that is 

C f: the class of  (x,t) goes to the class of  (f x, t). The second coordinate t  is not affected; it has 

the property that if you restrict it to X × 1, then it can be identified with f; when you identify x 

with (x,1). You can ignore  that one and then it is just  x, to fx.  That is f.  
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So, X to Y you have a map, CX and CY are larger spaces containing X and Y; then we can think 

of C f as an extension of f. Extension of f from the cone over X  to cone over Y. So, this is what -

-- will have this picture; X is sitting inside CX and Y is sitting inside CY;  as (X,1) here and (Y,1) 

here.  

 

So, one of the nice property of this construction  is that C f will be a homeomorphism, if and only 

if f is a  homeomorphism; very easy to check. The more deeper thing here is that a cone 

construction  actually is a functor.  So, if f from X to X is the identity map; C f is the identity map. 

If X to Y, and Y to Z you have maps f and g, respectively, then  g composite f will be defined, it 

will be from X to Z.  Then  C g composite  C f is  C (g) composite  f; so that is the meaning of that 

cone construction is a functor.  Just like our  , which was from topological spaces to group.  It 

was a functor from  topological spaces to the groups.  Here, C is from space to space itself, 

topological spaces to topological spaces.  
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Now, the usefulness of the  cone construction will come into picture in the study of  homotopy 

theory. Any topological space X is contractible if and only if the space is retract of the cone; cone 

itself is contractible always. But, X is itself is contractible, if X is a retract of this one and 

conversely; so, this is the statement. Let us go through the proof of this. Take q from X × 𝕀 to CX  

the quotient map; X × 0 being identified to a single point. So, this is just the notation of the quotient 
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map. Suppose, now you have a homotopy H from X × 𝕀 to X, such it is the constant map at zeroth 

level; and identity at the level 1. So, between  a constant map and the identity map, H is a 

homotopy. 

Corresponding to this, there is a continuous map r from CX to X, defined by r(x, t)  equal to H of 

(x,t). r of the class x, t =H (x, t). You see this should  be independent of the class; so let us verify. 

If t is not 0, then x, t is a single point so it is H (x, t )no problem. If t is 0, all this is independent of 

x, one single point; but H (x, t) depends upon x. But, if t is 0 H is the constant map; therefore this 

is well defined. Not only it is well defined, automatically it is  continuous; because H is continuous 

on X × 𝕀 and it goes down to CX. Remember CX is a quotient map, this  is  unique; q  followed 

by this,  i.e.,  r composite q is H. 

So, that is why it is well  defined. So it goes down to the quotient space CX. Also, this r on (x,1) 

namely on the subspace X it is identity; because H(x,1) is x.  So, since we have identified X with 

X × 1, this is what we are using here; that is how we can talk about X as retract of CX. This is the 

meaning of retract, you may recall it; namely, a function r from the whole space to a subspace 

which is identity on elements of the subspace,  and r must be continuous. We have used the retracts 

earlier, we have shown that in the disc 𝔻2, the boundary namely  𝕊1 is not retract a  of 𝔻2. We have 

shown that one in proving Brouwer’s fixed point theorem.  

What we have proved so far?   If  the constant map is homotopic to the identity map of X; namely, 

if X is contractible, then X is a retract of  CX. Now, let us look at the converse. Suppose you have 

a retraction CX to X, then you just define H (x, t) by r; H x, t by same formula. Earlier  I used  H  

to define r; now this r is given here, I am defining H. Automatically, H  has the property that when 

t is 0, it is a single point, and when t is 1-- means r (x,1) by definition is r  (x) which is (x,1). So it 

is the identity map. So, H gives you a homotopy of the constant map with the identity map of X.   

Just to remind you,  I have to use the fact that CX is the quotient of X × 𝕀, where all of X × 0 is 

identify a single point. And homotopy of the identity map to a single point has also this property; 

therefore everything works fine.  
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Now, here is an example. Let us take the circle,  more generally take  any sphere; you can even 

take 𝕊0 also. So, take the sphere 𝕊n-1.  Take the cone over it.  That will be homeomorphic to the 

disc of 1-dimension higher.  So, start this with 𝕊0, a cone over that will be homeomorphic to the 

interval - 1 to + 1. If you take 𝕊1, this will be the disc 𝔻2 and so on. For n = 2, this is the familiar 

polar coordinates, polar coordinates of complex numbers, r times cos 𝜃, sin 𝜃. The cos 𝜃, sin 𝜃 is 

a point of 𝕊1; r  ranges over 0, 1; so the domain of polar coordinates is 𝕊1 × 𝕀 you can say. 

But, when r is 0, it gives you one single point; so the entire 𝕊1 × 0 is going to a single point; so, 

that is a quotient map. So, that is why the cone over 𝕊1 is 𝔻2; for n ≥ 2, it is a generalized polar 

coordinate. When you have a vector, unique vector in 𝕊n-1; namely,  in  ℝn a unit vector. The rest 

of the ℝn can be thrown away.  r times a unit vector. When r is 0, it will give me just a single point; 

but if r not equal to 0, there is  one-oneness. So, what we do? 𝕊n-1 × 𝕀 to  𝔻n; just write (x, t) going 

to t times x. This map is clearly continuous surjection, and one-to-one except for points in 𝕊n-1 × 

0; the entire thing is mapped to a single point. 

Therefore, this map p factors down to the cone over 𝕊n-1 to 𝔻n; this is a quotient map. So, it gives 

you a map p bar on this quotient space C𝕊n-1; so p bar is the unique map defined by p. So, p bar q 

composite p bar is p; since the domain is compact, that is  C of (𝕊n-1 )is compact, for  𝕊n-1  is 

compact; product with 𝕀 is compact; therefore quotient is compact. So, the domain is compact. 
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And this is Hausdorff. We have a continuous bijection; so it is a homeomorphism. This argument 

will keep occuring  all the time. 
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So, we identified X × 0 to a single point.  So we got an ice-cream cone like that. Instead, you could  

identify to X × 1 also to a point; then you would have got a tent; both of them are cones. 

Homeomorphically. all that you have to do is   change (x,t) to (x,1) - t; then you get the other one, 

so there is no problem. In fact, this can be done on any closed interval also, I have told you. But 

we have just standardized these things so that again and again we do not have to be warned--- 

changing coordinates and all that.    
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Now, let me tell you about another important construction namely,  adjunction space. So, pay 

attention to the definitions, so you should not have any confusion in the definition. You start with 

a space  X  and a  closed subspace Z; Z is a closed subspace of X. Sorry the other way round . Let  

be  X is a closed subspace of Z; let us do stick to the notation in the slide that I have already fixed 

and  let us  not change it here. Let X be a closed subspace of Z, and  take a    continuous  function  

from X to Y, where  Y is another space. On the subspace you have a continuous function; on this 

closed subspace X, you have a continuous function.  

Now, the adjunction space is defined as the quotient of the  disjoint union of Z and Y modulo  

some relation. So, it is a quotient of Z disjoint union Y modulo some relation; and I am going to 

denote it by A_f or Z union over f Y. So, these are the notations for the final quotient space.  You 

start with the  disjoint union of Y and Z, then you have to make an identification. What is the  

relation? Every point x in X will be identify with f x in Y for every x in X; so this is the 

identification.  No other identification  there.  If z is a point not in X then it is not identified with 

any other point. Each  such  z= z itself. That is all. Similarly, each y in Y is equivalent to y itself. 

There is no identification inside Y. A point y in  Y and the point x  in X, they are identified, when? 

y must be equal to f(x); then only those two points are identified. This space is also called the space 

obtained by attaching the whole space Z to the space Y via the map f. This is the description of 

attaching. This one will come very  much into i operation, maybe,  a later,   in algebraic topology, 

when you study cell complexes and so on.  

243



 

So, Y can be identified with a closed subspace of Af;  Here Af is the adjunction space, each 

singleton y being its class. There is no identification; each Y itself is a class there. 

So, that inclusion map from the disjoint union to the quotient space; that will be a closed subspace. 

Why? Because inverse image is just Y in the  disjoint union Y and  Z; that is closed here. In the  

disjoint union both Y and Z are closed subspaces. Only thing is we will not get a copy of Z in Af . 

Because there is some identifications inside X. Suppose,  f x1 = f x2; then  x1 and x2 will be 

identified with the f x1 = f x2. So, it depends upon whether f is injective or not; so, Z may not be a 

subspace of Af, but Y is subspace. 

If the image of f is closed in Y,--- this is an  extra hypothesis--  then Z will be closed in Af, sorry 

I mean the  image of Z will be closed in Af. Also, if f is injective, then Z can be identified with its 

image in Af. If f is injective, then there will not be any identification within  points of Z. Then  z 

going to its class, it is a single point; that each class a single point. So, then Z can be identified 

with its image, that is how it will be also a subspace.  

 

The  adjunction space is such a  wide, generic  definition,  it gives you a lot  of examples. In some 

special cases they have special names now. 
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Now, I have made several claims here, which are all topological claims; which are all  easy.  But, 

unless you verify them each, step by step, you will not get the full picture of  these new concepts. 

So, you have to spend that much of time. So you are is requested to verify the validity of each and 

every claim made in the above paragraph. We have to see every thing, because this is that  blah 

blah blah. So you have to verify. For instance, why is j an embedding? Why  Y is closed subspace 

of Af     etc., please make sure that you have  verified them yourself. 
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So, we will take some special cases now. But, mapping cylinder, remember just now we have 

defined cylinder; now I am going to define a mapping cylinder. f from X to Y is a map, it is a just 
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continuous function; then mapping cylinder is got all follows:  First of all, on X,  I have a cylinder 

X × 𝕀; then I take the disjoint union with Y, just like I took Z cross disjoint union with  Y, in the 

adjunction space construction.  Here it is  Y disjoint union X × 𝕀. Then make the identification, 

namely, (x ,1) with f(x), for every x in X.  

So, this is a special case of the adjunction space namely Z is X × 𝕀; X × 𝕀 here and  X is X × 1 On 

X × 1 think of f  being defined there. If you put Z = X ×𝕀 and X= X × 1 , in the earlier example 

adjunction space, you get the mapping cylinder of f; so this a special case. This is called the  

mapping cylinder of f, and is denoted by . The reader may think of this as a special case of the 

adjunction space construction; that is what I have told. So, here is a picture  of that. Let me show 

you a picture of mapping cylinder.  
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So,  X × 𝕀. To begin with  I  a map X to Y. In this picture I am showing X as a disc, and Y as just 

a curve here; sorry that is the  image of f. So, image of f is a curve in  Y which is   a rectangle. Y 

is a rectangle, X is a disc; but the image is only just a curve here.  For the mapping cylinder,  I 

have taken  X × 𝕀, but  the point x cross 1 do not remain as it is x × 1. Because each point x × 1 

has to be  identified with its image under f. So, this point goes to this point, then x × 1 will be 

identified with this point and so on. 

So, this is the picture for mapping cylinder ; M for mapping cylinder of f. So, there are various 

inclusions and so on; because of the importance of this construction, let us pay some attention to 

this one.  
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Just like in the case of adjunction space, there  is a map j from Y to ; this is always the inclusion 

because the space Y is not disturbed. There is a also an  inclusion map i from X to ; this is at X 

× 0, or any other X × t not equal to n 1;  On X × 1, there are identifications. So, this inclusion is X 

× 0; so i of x goes to  x × 0. And then there the map f hat from  to Y; f itself is extended; f hat 

(x, t) goes to f x. If   you take f hat (x,0), it is just fx ,  each (x,1) will get identified with  f x for all 

x.  f hat of y I have defined, it is just y. When  y is fx for some x,  it is f hat ( x 1 will be y of course. 

So, this map f hat is continuous. That is what  we have to verify. 

I have defined, on X cross I, I have defined f hat like this; and on   Y, it is defined this way. 

Whenever, we make identification,  these two  coincide. Because f hat of x comma 1 is fx and   we 

identify it with  y=f x . So, f hat is an  extension of f,  for X is contained in   as  X cross 0.  

248



(Refer Slide Time: 34:27) 

 

So, here are the claims, i and j are embedding; i is an embedding of X and j is embedding of Y. 

We use them to identify X and Y as subspaces of . To begin with  X and Y are arbitrary 

spaces; there is a map between them. Now,  will include  both domain and co-domain of f as 

subspace.  It brings them together, this is the whole idea. Now,  which defines a continuous 

function on , such that  composed i  is f;  (x,0)  is equal f (x) for every x. Check that f 

composite j is identity of Y; so that is how we define it here.  

We shall soon see that in a very strong sense, the mapping cylinder can be used  as a device to 

replace the continuous function f from X to Y by the inclusion map from X to . What is the 

meaning of this replacement? We will let you know later.  The mapping cylinder, is  a special case 

of the adjunction space. So, there are some more things we shall consider them next time. Thank 

you. 
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