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Welcome to module 14. Last time, we introduced the notion of Group Actions. Now, we will 

study a number of group actions and the quotient spaces arising out of that the orbit spaces. 

The first example is ℝn+1 minus the origin, n dimensional real Euclidean space minus its origin. 

What is the action? What is the group? Group is a non-zero real number, non-zero real numbers 

will act on the Euclidean spaces by multiplication, scalar multiplication.  

You throw away 0, then every non-zero vector will go into non-zero vector. You the zero 

vector, capital 0 also no problem, but under the action of left  all the elements would have fixed 

0, 0 would become a singleton orbit.  So, that is not an interesting element, you are throwing it 

away. That is all. Now, what will be the orbit of  a vector (x0, x1,..., xn ) which is non-zero?  It  

is equivalent to (y0,y_1, .... y_n-1, yn ) if one  is the scalar multiple of the other.  

So, under these equivalence classes whatever you get, the  collection of all equivalence classes 

is called n dimensional real projective space. You  might have studied elsewhere that this space  

actually parameterizes all lines passing through the origin, each line is given by a non-zero 

vector, namely,  whatever  is spanned by the non-zero vector. Any two non-zero vectors lying 

on the same line are equivalent in this sense, namely, one is a multiple of the other, because 

they are dependent on each other. That is the real projective space with the quotient topology 

coming from ℝn+1  0.  
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So, write q from X to ℙn as the quotient map or you can write q of x as bracket x to denote the 

class of x. My first question is, is q an open mapping?  So, how to answer this--- q is open map 

or not? Start with an open set U,  q(U) must be open. But q(U) is inside the projective space, 

the topology there is the quotient topology. That means what? q-1(q U) must be open.  

Start with an open set  U, q-1(q U) must be open. What does that mean? All  times v where v 

is a vector in U and  varies over all the non-zero scalars that must be open which is nothing 

but the union of all U’s, as  varies over ℝ star. In any case, it is a union of open sets,  times 

U is just a copy of U under the homeomorphism namely multiplication by ,  all these  are 

homeomorphisms. Remember that.  

So, U is open and hence  U is open for each . So, union is open. So, do you see the phenomena 

always  valid for any topological action? The quotient  is always an open quotient. You see in 

this argument I have never used  that it is actually ℝ or ℝn+1  and so on. It is a general argument. 

So, all quotient maps coming from a group action-- they are open maps.   

205



(Refer Slide Time: 05:10) 

 

Now observe that the multiplication is a homeomorphism, therefore each U  is open all this I 

have told you already. The beauty here is you can restrict the whole action to unit vectors, but 

then the actions should be also restricted to a subgroup, namely you cannot take all scalars 

because if you take any arbitrary scalar and multiply by a unit vector it will not, it may not be 

a unit vector. Then what you have to take, you have to take unit scalars. There are only two 

unit scalars in ℝ namely ± 1.  

So, action of ± 1 on 𝕊n, look at the orbits, it is again the same set of orbits, every orbit of ℙn is 

represented by a unit vector, in fact it is represented by two unit 

vectors if v is a vector − v will be also a unit vector representing 

the same line and they are related by the action of ± 1. Therefore, q 

from 𝕊n to ℙn itself is a quotient map. This map is a closed mapping, the entire thing from 

ℝn+1 0 to ℙn was an open mapping, when you restrict to 𝕊n, it is a closed mapping, why?  

 

For, suppose A is a closed subset of 𝕊n, 𝕊n is compact. Therefore, A will be compact, if A is 

compact, q(A) will be compact. Now q(A)  is a compact subset of ℙn,-- we should verify that 

it is a Hausdorff space. You should know that, then  q A will be closed. So, it helps to verify 

why this projective space is Hausdorff. Perhaps I will leave to you as an exercise. Now, the 

entire discussion that we have just done can be carried on with complex numbers. Wherever ℝ 

comes here, replace it by ℂ:  ℂn+1 and ℂ star, i.e.,ℂ − 0. So, complex numbers non-zero 
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complex numbers are scalars. What do you get is the complex vector space. So, that is 

what I am doing here.   
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Namely to replace ℝ by ℂ, everywhere in the above example, you get the definition and 

properties of the complex projective space which is denote by  Did you come to the place 

where you restrict the quotient map ℂn+1 − 0 it should be to , to the unit sphere in 

ℂn+1, only thing is unit sphere in ℂn+1 is not  𝕊n, but it is 𝕊2n+1 because this is 2n+2- dimensional 

real vector space.  

So, the unit sphere will be 𝕊2n+1, instead of 𝕊n that is all. And ℂPn will be a quotient of this by 

unit scalars in complex numbers. That is not just ± 1 but it is the entire circle. So, the circle 

acts on 𝕊2n+1. So, you should write elements 𝕊2n+1 as, say,  z naught  z1, dot dot  zn, all complex 

numbers. Then you use the complex multiplication by complex numbers that is the action here. 

the quotient will the same.  Once again 𝕊2n+1 is compact, therefore this is compact. But these 

things are actually Hausdorff. Can be verified.   It is not all that easy.  It is easy in the real case, 

here it is slightly more complicated.   
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Let us carry out the most important aspect of quotient spaces, what are the properties of the 

original space which will reflect, which will remain intact when you go to the quotient space, 

such things are called co-hereditary properties.  So, naturally one would like to know, whether 

a given topological property of X holds for the quotient space. For example, if X is compact, 

the quotient map being a surjective continuous, the quotient space  is compact. This is what we 

have used already. Similarly, if X is connected, the quotient space is also connected, these are 

the two easy things.  

On the other hand some very elementary properties like T1, T2 regular, normal etc.,  none of 

these  largeness properties is passed on to the quotients easily. That is why in the previous 

examples, you have to verify separately that ℙn and ℂPn are actually Hausdorff spaces. So, let 

us carefully go through these exercise what are the kinds of things that will give you the 

properties below I mean, for the quotient space.   
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The first thing is, if Y itself is a T1 space. When it is a T1 space this means that each point is 

closed. By the very definition, inverse image of each point must be closed, because q is a 

continuous function. And conversely also, because this is the quotient topology. Whether X is 

Hausdorff or not, if each   orbit is closed, then Y, which is  the orbit space, will be automatically 

a T1 space.  
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Second thing is, I told you that Hausdorffness is a very tricky thing. There is no easy criteria 

to determine Hausdorffness like this, even if X is  Hausdorff, Y may not be Hausdorff. 

Therefore, especially in the study of manifolds, wherein you want to have the Hausdorffness, 

(the same thing in algebraic topology) all the time we HAVE to assume the spaces are  
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Hausdorff. So far we have not come across such a situation.  But that is what essentially  

essentially algebraic topology is built on, assuming Hausdorffness.  

A blanket assumption that all manifolds are Hausdorff that is used. So, when you construct 

something as a quotient space you will have to verify not only it is locally Euclidean-- you 

have to verify Hausdorffness also.  
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So, let us spend some time on Hausdorffness. So, recall that something is Hausdorff space if 

the diagonal in X × X in the product of X with itself, the diagonal Δ, namely elements of the 

form x , x, they form a closer subspace. So, that is an equivalent condition. Now suppose X to 

Y is a quotient map, given by an equivalence relation ℝ, an equivalence relation is actually a 

subset of X × X. Whenever x is related to y that means what? You put them in a subset ℝ. So, 

if a pair belongs to that subset, then they are related. So, that is the meaning of this ℝ. ℝ is a 

subset of X × X which gives you the relation.  

Now, look at (q × q)-1ΔY, ΔY is now what? Diagonal in Y × Y or the set of all elements  (y ,y), 

y belonging to Y. That will automatically equal to ℝ, because if   x1, x2 is inside ℝ2,  they will 

come to same point in Y. So, this is the meaning of that Y is the quotient of X by the relation 

ℝ, that is all set theoretically I have written. So far it just  theory. If ℝ is a closer subset of X × 

X, then by the very definition, you would like to have ΔY as a close subset of  Y × Y.  

Unfortunately, Y × Y is given the product topology not the quotient from X × X, if you had 

given the quotient space topology on Y × Y through X × X, then your problem was over. All 

that you wanted is that ℝ is a closed subset of X × X. So, that may not be the case.  If ℝ is a 
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closed subset of X × X and if Q is an open mapping, then we are through. Because if q is an 

open mapping, then q × q is also an open mapping. Obviously, it is surjective also. Therefore, 

it is a quotient map.So, the product topology on Y × Y is a quotient topology from X × X.  

In general, first you take the product then take the quotient or the other way around they do not 

commute with each other.  These two operations do not commute with each other. That is the 

problem. So,  for open mappings, we have solved this problem.  More generally,  start with a 

quotient space Y such that  Y × Y is also a quotient of X × X, then only this will work.  

Namely, all that you need is that the relation as a subspace of X × X must be a closed set. Then 

whatever happens to X, X may not be Hausdorff, but Y will be  Hausdorff. So, this is similar 

to our earlier result when the quotient space is at T1 space, remember. It is similar to that but 

you have to work harder over here.  

(Refer Slide Time: 18:10) 

 

As I told you why we studied the group actions. They give you a large number of quotient 

spaces. So, now you recall that you had an even action, what is an even action? It is stronger 

than fixed-point free action.  Remember, each point has a neighbourhood U, such that all the 

translates of this neighbourhood, actual translates other than identity, they will never intersect 

U. It is the same thing as saying that two distinct translates will not intersect at all. That is the 

evenness condition. It is  also called properly discontinuous action. 

Under this condition, we shall see that the quotient map is actually a very special kind of map  

called covering projection. Similar to the  exponential function from ℝ to 𝕊1. That we will see 

later. Right now, what you can verify is that if X is Hausdorff, then the quotient X / G is 
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Hausdroff, under an even action. All these things are very straightforward computations. 

Unless you sit down and do it by yourself--just me rolling out the solution ---  will not go into 

your head.  
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Next thing is, I have already told you that even actions are always fixed point free.  Converse 

will be also true, if G is a finite group. Thus, we can conclude that if G is a finite group, acting 

fixed point freely on a Hausdroff space, then X / G is Hausdroff. That is because we can go 

back to the  example,  to the previous example.   
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Now I look at this  finiteness condition here a nd delete that. What can happen? Maybe it still 

works! This example says no.  What is it?  I will give you a fixed point free action yet the 

quotient is not a Hausdroff space. The new thing here is that the group is infinite. To be precise, 

we just take the infinite cyclic group written multiplicatively. Instead of that I have  represented 

it by  integers  here.  

Actually, if you see,  it is better to write multiplicative notation, take a generator t and then    

 and so on,  that forms the group. So, never mind,  you take the action of ℤ on 

ℝ2 as follows. So, elements of Z are written as integers n.  (x, y) will go to .  The 

first coordinate is multiply by 2n, the second coordinate is divided by 2n.  

So, you can see immediately that this is a fixed point free action, if you throw away 0. You 

have to throw away 0. That will give automatically a fixed point free action. Keep the 0 for a 

while, because you would like to study the entire thing, how things look like. So, pay attention 

to all the details here. Let us write down the quotient map from ℝ2 / Z is a quotient space here, 

and you have the quotient map. You can write q (x,y) to denote the orbit space also, whichever 

one you like, or just  bracket (x,y). So, I will use both the notations here.   
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Orbit of 0, (0 remains  0 always 0,)  it consists of only one element, 

multiplication, or division, you  only get  0. So, singleton 0  is one 

orbit. Now, take the ray from 0 to ∞ on the x- axis, i.e,  0 to ∞ cross 

0. What are the elements? x,0. So, when you multiply by 2n or divide by 2n, 

it will still remain on the x- axis.  

Not only that, it will remain in the positive x- axis.  So, positive x-axis, negative x-axis, positive 

y- axis, and  negative y-axis, there are four of these subspaces which are invariant under the 

action. So, these are invariant subspaces, what are the quotients of this one? What is the image 

of this one? I claim that image of each of them is a circle. Just examine one of them. The 

argument is similar.  

What happens to 1, 1 will go to 2, 4, 8 on this side it will be 1 / 2, 1 / 4, 1 / 8 and so on, what 

happens to in between,  1 to 2 what happens? That interval gets just mapped  homeomorphically 

to 2 to 4 expanded. Again it will be mapped to 4 to 8 and then 8 to 16 and so on. On this side 

it will be contracting. So, half to 1, it will be halved, then one fourth to 1 / 2, it will be one 

fourth and so on.  

So, each part is mapped homeomorphically to the other, and endpoints are identified. So, when 

you identify all these, what you get is-- just like exponential function wraps the infinite, line 

ℝ, from - ∞ to  + ∞, onto 𝕊1, this will also give you the quotient space as 𝕊1.  
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So, in the quotient space, there is one single point which is the  orbit of 0, 0 and then there are 

these four circles.  

Now, let us look at beyond this one. Let us look at the first quadrant, 

second quadrant, third quadrant and fourth quadrant. What is 

happening there, the first quadrant you can look at this one. 

Suppose, you take a point x, y, you are going to multiply the first 

coordinate  x / 2 and dividing  y / 2. So, each time inverse you will 

multiply this 1 by 1 by 2 and divide that 1 / 2. So, in effect, the 

product remains the constant, x y is a constant. That means what? 

The hyperbola x y = r, one of the branches of x y = r, where r  ≠ 0. ( r 

equal to 0  will give the union of x axis and y -axis). So x y = r, when 

r is not 0, r +, has two branches one in the first quadrant, other one 

in the third quadrant.  

Similarly, if r is − these two hyperbola, the two laps of the 

hyperbola will be in the second quadrant and fourth quadrant, they 

are themselves invariant under the action. Just like the positive x- 

axis is invariant, these lines are also invariant and what happens to 

them exactly is what happened to the real line and so on ,they really 

get wrapped up into a circle.  

So, for each hyperbola x y = r there are two circles. So, let us denote them by . See X±1,  

Y± 1, are the images of the positive real axis, negative real axis, positive imaginary axis, 

negative imaginary axis. Now , these are all images of  hyperbolas. So, the quotient 

space is actually a union of a lot of circles along with the [0], 0 a single point orbit.  
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Now [0,0],   singleton \{(0,0)\}, inverse image is (0,0), that is a closed. Therefore, in the 

quotient space [0, 0] is a closed orbit. But look at X± and Y±. I started with an open ray. So, 

open ray is not a closed subset of ℝ2 So, what happens is these things are not closed. In fact, 

you can see for each point z in them, if you take the closure of that, that will contain (0, 0),  no 

matter where you take z. It is the class that will come very close to, as close to (0, 0) as possible, 

under multiplication (or division), by going on multiplying (or dividing) by it by   powers of 2.  

It will come as close as you please.  So, each set [z] will have (0, 0) in its closure. Each  [z] bar 

will contain [0, 0],  [z] bar is the closure of [z]. So, no point of  this is  closed. what I have 

shown is that none of these points is a closed point in the  space Z. So, what does it mean? Z 

not  T1. All this looks like because we have put this bad point [0, 0]. 

So, let us throw away this point, let us look at the quotient space 

Z− the orbit [ 0, 0]. Then, we are left with all the circles, they are 

packed up in a very strange way.  

So, let us look at Z′, which is Z−  singlenton [0, 0]. Now, all these ± 

X axis, Y axis parts, they are all closed subspaces. All the hyperbola 

laps are closed subspaces. Therefore, each orbit, each of these 

spaces, they are close sub spaces. They are themselves close 

subspaces. Not only that, each orbit is  also a closed space now. 

On the X axis and Y axis, 0 was the only limit point. On the hyperbola there are no limit points, 

they will keep going to infinity, so there is no problem. So, the orbits are discrete spaces. So, 

each orbit is now closed. So, it is definitely T1.  But we will show that this cannot be Hausdorff. 
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So, what we can show  is that after throwing away [0, 0] this becomes a T1 space, every point 

is closed, and that  it cannot be Hausdorff is what we want to show.  
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So this is the claim. Look at the image of (1,0) and (0,1). Namely the class of 1,0 and the class 

of 0,1. I want to say that these two points cannot be separated by disjoint open sets in Z′.  Take 

an open set U and another open set V, which contains classes [(0, 1)] and [(1,0)] in ℝ2, 

respectively. Start with ℝ2, take open sets there. Then, if n is very large, look at the point (1,1) 

under the action of  tn,  y-coordinate will be very close to  0 as close as you want by choosing 

n large enough. That means it will be inside the open set V.  

Similarly,  under the action of t-n, (1,1) will be inside V.  We can choose a common n such that 

both of them will happen, no matter how small U and V, we can find a common n, large enough 

n that these things happen. Namely, (1,1) by 1 by t power is inside U and  under t-n  it will be 

inside V.  If I multiply the second 1 / 2n, I get the first 1. I mean action of 2n . See the first 

coordinate is 2n, the second coordinate is 2-n. So, that is precisely this point. It 

means these two are the same orbit. So, U and V when we go down ot 

Z, will contain image of these two elements,  the same element that 

is there. That is why the  intersection is non-empty, what I mean,  q 

U ∩ q V is non-empty. 

If you started with two opens of sets containing q ( 0 1), and   q (0 1), there inverse images 

would have been like these neighbourhoods U and V.  Then q of that would have been this. 

Therefore, for every open subset containing q (1, 0) and q (0,1),  intersection is non-empty. So, 
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that shows that this is non Hausdorff. The same argument can be done with many other points 

on the X axis and Y axis.  

 

Since this cannot be Hausdorff,  but T1,  the conclusion is  much stronger, namely,  
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this space cannot be regular or normal. Why? Under T1-ness, regularity will imply T2-ness. 

Similarly, under T1-ness normality will imply Hausdorff. But we have shown that is not 

Hausdorff. So, this is neither regular nor normal. Whereas our original space  ℝ2 (0,0)  is a 

metric space. It satisfies all this properties. The quotient does not satisfy anything other than 

T1. Convincing? We stop here now. We will study some more examples next time. Thank you. 
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